MATRICES

Synopsis

- **1.** A matrix is an arrangement of real or complex numbers into rows and columns so that all the rows (columns) contain equal no. of elements.
 - If a matrix consists of 'm' rows and 'n' columns, then it is said to be of order m×n.
 - 3. A matrix of order $n \times n$ is said to be a square matrix of order n.
 - **4.** A matrix $(a_{ij})_{m \times n}$ is said to be a null matrix if $a_{ij} = 0$ for all i and j.
 - 5. Two matrices of the same order are said to be equal if the corresponding elements in the matrices are all equal.
 - 6. A matrix $(a_{ij})_{n \times n}$ is a diagonal matrix if $a_{ij} = 0$ for all $i \neq j$.
 - 7. A matrix $(a_{ij})_{n \times n}$ is a scalar matrix if $a_{ij}=0$ for all $i \neq j$ and $a_{ij}=k$ (constant) for i = j
 - 8. A matrix $(a_{ij})_{n \times n}$ is said to be a unit matrix of order n, denoted by I_n if $a_{ij}=1$, when i=j and $a_{ij}=0$ when $i \neq j$

Ex:
$$\mathbf{I}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{I}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

9. If
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m \times n}$, then $A + B = (a_{ij} + b_{ij})_{m \times n}$

10. Matrix addition is commutative and associative

11. If
$$\mathbf{A} = (\mathbf{a}_{ij})_{m \times n}$$
, $\mathbf{B} = (\mathbf{b}_{ij})_{n \times p}$, then $\mathbf{AB} = \left(\sum_{k=1}^{n} \mathbf{a}_{ik} \mathbf{b}_{kj}\right)_{m \times p}$

12. Matrix multiplication is not commutative but associative

- **13.** If A is a matrix of order $m \times n$, then $AI_n = I_m A = A(AI = IA = A)$
- 14. If AB = CA = I, then B = C
- **15.** If $A = (a_{ij})_{m \times n}$, then $A^T = (a_{ji})_{n \times m}$
- **16.** $(KA)^{T} = KA^{T}, (A + B)^{T} = A^{T} + B^{T}, (AB)^{T} = B^{T}.A^{T}$
- 17. A(B + C) = AB + AC, (A + B)C = AC + BC
- 18. i) A square matrix is said to be "non-singular" if detA ≠ 0
 ii) A square matrix is said to be "singular" if detA = 0
- **19.** If AB = 0, where A and B are non-zero square matrices, then both A and B are singular.
- **20.** A minor of any element in a square matrix is determinant of the matrix obtained by omitting the row and column in which the element is present.
- **21.** In $(a_{ij})_{n \times n}$, the cofactor of a_{ij} is $(-1)^{i+j} \times (\text{minor of } a_{ij})$.
- 22. In a square matrix, the sum of the products of the elements of any row (column) and the corresponding cofactors is equal to the determinant of the matrix.
- 23. In a square matrix, the sum of the products of the elements of any row (column) and the corresponding cofactors of any other row (column) is always zero.
- **24.** If A is any square matrix, then A adjA = adjA. A = detA. I
- **25.** If A is any square matrix and there exists a matrix B such that AB = BA = I, then B is called the inverse of A and denoted by A^{-1} .

26.
$$AA^{-1} = A^{-1}A = I.$$

27. If A is non-singular, then $A^{-1} = \frac{adjA}{det A}$ (or) $adjA = |A|A^{-1}$

28. If
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, then $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

29.
$$(A^{-1})^{-1} = A, (AB)^{-1} = B^{-1}.A^{-1}, (A^{-1})^{T} = (A^{T})^{-1}; (ABC....)^{-1} =C^{-1}B^{-1}A^{-1}.$$

Theorem: Matrix multiplication is associative. i.e. if conformability is assured for the matrices A, B and C, then (AB)C = A(BC). d_{ik}c_{kl}

Sol. **Proof**:

Let $A = (a_{ij})_{m \times n}, B = (b_{jk})_{n \times p}, C = (c_{kl})_{p \times q}$

AB =
$$(d_{ik})_{m \times p}$$
, where $d_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}$

(AB)C =
$$(f_{il})_{m \times q}$$
, where $f_{il} = \sum_{k=1}^{p} d_{ik}c$

BC =
$$(g_{il})_{n \times q}$$
, where $g_{il} = \sum_{k=1}^{p} b_{jk} c_{kl}$
A(BC) = $(h_{il})_{m \times q}$, where $h_{il} = \sum_{j=1}^{n} a_{ij} g_{jl}$
 $f_{il} = \sum_{j=1}^{p} d_{ik} c_{kl} = \sum_{j=1}^{p} \left(\sum_{k=1}^{n} a_{ij} b_{jk} \right) c_{kl}$

$$= \sum_{j=1}^{n} a_{ij} \left(\sum_{k=1}^{p} b_{jk} c_{kl} \right) = \sum_{j=1}^{n} a_{ij} h_{jl} = h_{il}$$

$$(AB)C = A(BC)$$

Theorem: Matrix multiplication is distributive over matrix addition i.e. if conformability is assured for the matrices A, B and C, then

- i) A(B+C) = AB + AC
- ii) (B + C) A = BA + CA

Sol. **Proof:**

 $\sum_{j=1}^{n} a_{ij}d_{jk}$ $-(f_{ik})_{m\times p}, \text{ where } f_{ik} = \sum_{j=1}^{n} a_{ij}b_{jk}$ $AC = (g_{ik})_{m\times p}, \text{ where } g_{ik} = \sum_{j=1}^{n} a_{ij}c_{jk}$ $AB + AC = (y_{ik})_{m\times p}, \text{ where } y_{ik} = f_{i}, ...$ $\sum_{ik} = \sum_{j=1}^{n} a_{ij}d_{jk} = \sum_{j=1}^{n} a_{j}...$ $= \sum_{j=1}^n a_{ij} b_{jk} + \sum_{j=1}^n a_{ij} c_{jk} = f_{ik} + g_{ik} = y_{ik}$ $\therefore A(B+C) = AB + AC$

Similarly we can prove that

$$(\mathbf{B} + \mathbf{C}) = \mathbf{B}\mathbf{A} + \mathbf{C}\mathbf{A}.$$

Theorem: If A is any matrix, then $(A^T)^T = A$.

 $A^{T} = (a'_{ji})_{n \times m}$, where $a'_{ji} = a_{ij}$ $(A^{T})^{T} = (a''_{ji})_{m \times n}$, where $a''_{ij} = a_{ji}$ $a_{ij}'' = a_{ji}' = a_{ij}$ $\therefore (A^T)^T = A$

Sol. Let $A = (a_{ij})_{m \times n}$

Proof:

Theorem: If A and B are two matrices o same type, then
$$(A + B)^{T} = A^{T} + B^{T}$$
.
Proof:
Let $A = (a_{ij})_{m \times n}, B = (b_{ij})_{m \times n}$
 $A + B = (c_{ij})_{m \times n}, \text{ where } c_{ij} = a_{ij} + b_{ij}$
 $(A + B)^{T} = (c'_{ji})_{n \times m}, c'_{ji} = c_{ij}$
 $A^{T} = (a'_{ji})_{n \times m}, \text{ where } a'_{ji} = a_{ij}$
 $B^{T} = (b'_{ji})_{n \times m}, \text{ where } a'_{ji} = b_{jk}$
 $A^{T} + B^{T} = (d_{ji})_{n \times m}, \text{ where } d_{ji} = a'_{ji} + b'_{ji}$
 $c'_{ji} = c_{ij} = a_{ij} + b_{ij} = a'_{ji} + b'_{ji} = d_{ji}$
 $\therefore (A + B)^{T} = A^{T} + B^{T}$

Theorem: If A and B are two matrices for which conformability for multiplication is assured, then $(AB)^{T} = B^{T}A^{T}$.

Sol. Proof: Let $A = (a_{ij})_{m \times n}, B = (b_{ji})_{n \times p}$

$$AB = (c_{ik})_{m \times p}, \text{ where } c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}$$
$$(AB)^{T} = (c'_{ki})_{p \times m}, \text{ where } c'_{ki} = c_{ik}$$
$$A^{T} = (a'_{ji})_{n \times m}, \text{ where } a'_{ji} = a_{ij}$$
$$B^{T} = (b'_{kj})_{p \times n}, \text{ where } b'_{kj} = b_{jk}$$
$$B^{T} \cdot A^{T} = (d_{ki})_{p \times m}, \text{ where } d_{ki} = \sum_{j=1}^{n} b'_{kj} a'_{ji}$$
$$c'_{ki} = c_{ik} = \sum_{j=1}^{n} a_{ij} b_{ji} = \sum_{j=1}^{n} b'_{kj} a'_{ji} d_{ki}$$
$$\therefore (AB)^{T} = B^{T} A^{T}$$

- Theorem: If A and B are two invertible matrices of same type then AB is also invertible and $(AB)^{-1} = B^{-1}A^{-1}$.
- **Sol.** Proof: A is invertible matrix $\Rightarrow A^{-1}$ exists and $AA^{-1} = A^{-1}A = I$.

B is an invertible matrix \Rightarrow B⁻¹ exists and

$$\mathbf{B}\mathbf{B}^{-1} = \mathbf{B}^{-1}\mathbf{B} = \mathbf{I}$$

1

Now $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1}$

 $(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B$

$$= AIA^{-1} = AA^{-1} = I$$

: AB is invertible and

$$= B^{-1}IB = B^{-1}B = I$$

 \therefore (AB)(B⁻¹A⁻¹) = (B⁻¹A⁻¹) = (B⁻¹A⁻¹)(AB) = 1

 $(AB)^{-1} = B^{-1}A^{-1}$.

Theorem: If A is an invertible matrix then A^{T} is also invertible and $(A^{T})^{-1} = (A^{-1})^{T}$.

Sol. **Proof:** A is invertible matrix $\Rightarrow A^{-1}$ exists and $AA^{-1} = A^{-1}A = I$

 $(AA^{-1})^{T} = (A^{-1}A)^{T} = I^{T}$ $\Rightarrow (A^{-1})^T A^T = A^T (A^{-1})^T = I$ \Rightarrow By def. $(A^T)^{-1} = (A^{-1})^T$

Theorem: If A is a non-singular matrix then A is invertible and $A^{-1} = \frac{AdjA}{det A}$. Sol. **Proof:** Let $A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$ be a non-singular matrix.

$$\therefore \det A \neq 0.$$

$$AdjA = \begin{bmatrix} A_{1} & A_{2} & A_{3} \\ B_{1} & B_{2} & B_{3} \\ C_{1} & C_{2} & C_{3} \end{bmatrix}$$

$$A \cdot AdjA = \begin{bmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{bmatrix} \begin{bmatrix} A_{1} & A_{2} & A_{3} \\ B_{1} & B_{2} & B_{3} \\ C_{1} & C_{2} & C_{3} \end{bmatrix}$$

$$= \begin{bmatrix} a_{1}A_{1} + b_{1}B_{1} + c_{1}C_{1} & a_{1}A_{2} + b_{1}B_{2} + c_{1}C_{2} & a_{1}A_{3} + b_{1}B_{3} + c_{1}C_{3} \\ a_{2}A_{1} + b_{2}B_{1} + c_{2}C_{1} & a_{2}A_{2} + b_{2}B_{2} + c_{2}C_{2} & a_{2}A_{3} + b_{2}B_{3} + c_{2}C_{3} \\ a_{3}A_{1} + b_{3}B_{1} + c_{3}C_{1} & a_{3}A_{2} + b_{3}B_{2} + c_{3}C_{2} & a_{3}A_{3} + b_{3}B_{3} + c_{3}C_{3} \end{bmatrix}$$

$$= \begin{bmatrix} \det A & 0 & 0 \\ 0 & \det A & 0 \\ 0 & 0 & \det A \end{bmatrix} = \det A \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \det A I$$

$$\therefore A \cdot \frac{\text{AdjA}}{\det A} = I$$

Similarly we can prove that $A \cdot \frac{AdjA}{det A} = I$

www.sakshieducation.com