MATRICES

Synopsis

1. A matrix is an arrangement of real or complex numbers into rows and columns so that all the rows (columns) contain equal no. of elements.
2. If a matrix consists of ' m ' rows and ' n ' columns, then it is said to be of order $m \times n$.
3. A matrix of order $n \times n$ is said to be a square matrix of order n.
4. A matrix $\left(a_{i j}\right)_{m \times n}$ is said to be a null matrix if $a_{i j}=0$ for all i and j.
5. Two matrices of the same order are said to be equal if the corresponding elements in the matrices are all equal.
6. A matrix $\left(a_{i j}\right)_{n \times n}$ is a diagonal matrix if $\mathrm{a}_{\mathrm{ij}}=0$ for all $\mathrm{i} \neq \mathrm{j}$.
7. A matrix $\left(\mathrm{a}_{\mathrm{ij}}\right)_{n \times \mathrm{n}}$ is a scalar matrix if $\mathrm{a}_{\mathrm{ij}}=0$ for all $\mathrm{i} \neq \mathrm{j}$ and $\mathrm{a}_{\mathrm{ij}}=\mathrm{k}$ (constant) for $\mathrm{i}=\mathrm{j}$
8. A matrix $\left(a_{i j}\right)_{n \times n}$ is said to be a unit matrix of order n, denoted by I_{n} if $a_{i j}=1$, when $\mathrm{i}=\mathrm{j}$ and $\mathrm{a}_{\mathrm{ij}}=0$ when $\mathrm{i} \neq \mathrm{j}$

$$
\text { Ex: } I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

9. If $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)_{\mathrm{m} \times \mathrm{n}}, \mathrm{B}=\left(\mathrm{b}_{\mathrm{ij}}\right)_{\mathrm{m} \times \mathrm{n}}$, then $\mathrm{A}+\mathrm{B}=\left(\mathrm{a}_{\mathrm{ij}}+\mathrm{b}_{\mathrm{ij}}\right)_{\mathrm{m} \times \mathrm{n}}$
10. Matrix addition is commutative and associative
11. If $A=\left(a_{i j}\right)_{m \times n}, B=\left(b_{i j}\right)_{n \times p}$, then $A B=\left(\sum_{k=1}^{n} a_{i k} b_{k j}\right)_{m \times p}$
12. Matrix multiplication is not commutative but associative
13. If A is a matrix of order $m \times n$, then $A I_{n}=I_{m} A=A(A I=I A=A)$
14. If $\mathrm{AB}=\mathrm{CA}=\mathrm{I}$, then $\mathrm{B}=\mathrm{C}$
15. If $A=\left(a_{i j}\right)_{m \times n}$, then $A^{T}=\left(a_{j i}\right)_{n \times m}$
16. $(K A)^{T}=K A^{T},(A+B)^{T}=A^{T}+B^{T},(A B)^{T}=B^{T} \cdot A^{T}$
17. $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC},(\mathrm{A}+\mathrm{B}) \mathrm{C}=\mathrm{AC}+\mathrm{BC}$
18. i) A square matrix is said to be "non-singular" if $\operatorname{det} \mathrm{A} \neq 0$
ii) A square matrix is said to be "singular" if $\operatorname{det} \mathrm{A}=0$
19. If $A B=0$, where A and B are non-zero square matrices, then both A and B are singular.
20. A minor of any element in a square matrix is determinant of the matrix obtained by omitting the row and column in which the element is present.
21. In $\left(\mathrm{a}_{\mathrm{ij}}\right)_{\mathrm{n} \times \mathrm{n}}$, the cofactor of a_{ij} is $(-1)^{\mathrm{i}+\mathrm{j}} \times$ (minor of a_{ij}).
22. In a square matrix, the sum of the products of the elements of any row (column) and the corresponding cofactors is equal to the determinant of the matrix.
23. In a square matrix, the sum of the products of the elements of any row (column) and the corresponding cofactors of any other row (column) is always zero.
24. If A is any square matrix, then $\mathrm{A} \operatorname{adj} \mathrm{A}=\operatorname{adj} \mathrm{A} . \mathrm{A}=\operatorname{det} \mathrm{A} . \mathrm{I}$
25. If A is any square matrix and there exists a matrix B such that $A B=B A=I$, then B is called the inverse of A and denoted by A^{-1}.
26. $\mathrm{AA}^{-1}=\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}$.
27. If A is non-singular, then $A^{-1}=\frac{\operatorname{adj} A}{\operatorname{det} A}$ (or) $\operatorname{adj} A=|A| A^{-1}$
28. If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$
29. $\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A},(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \cdot \mathrm{~A}^{-1},\left(\mathrm{~A}^{-1}\right)^{\mathrm{T}}=\left(\mathrm{A}^{\mathrm{T}}\right)^{-1} ;(\mathrm{ABC} \ldots .)^{-1}=\ldots . . \mathrm{C}^{-1} \mathrm{~B}^{-1} \mathrm{~A}^{-1}$.

Theorem: Matrix multiplication is associative. i.e. if conformability is assured for the matrices A, B and C , then $(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$.

Sol. Proof:

Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)_{\mathrm{m} \times \mathrm{n}}, \mathrm{B}=\left(\mathrm{b}_{\mathrm{jk}}\right)_{\mathrm{n} \times \mathrm{p}}, \mathrm{C}=\left(\mathrm{c}_{\mathrm{kl}}\right)_{\mathrm{p} \times \mathrm{q}}$
$\mathrm{AB}=\left(\mathrm{d}_{\mathrm{ik}}\right)_{\mathrm{mxp}}$, where $\mathrm{d}_{\mathrm{ik}}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \mathrm{b}_{\mathrm{jk}}$
$(A B) C=\left(f_{i 1}\right)_{m \times \mathrm{q}}$, where $\mathrm{f}_{\mathrm{il}}=\sum_{\mathrm{k}=1}^{\mathrm{p}} \mathrm{d}_{\mathrm{ik}} \mathrm{c}_{\mathrm{kl}}$
$B C=\left(g_{i 1}\right)_{\mathrm{n} \times \mathrm{q}}$, where $\mathrm{g}_{\mathrm{il}}=\sum_{\mathrm{k}=}^{\mathrm{p}} \mathrm{b}_{\mathrm{ik}} \mathrm{c}_{\mathrm{kl}}$
$A(B C)=\left(h_{i 1}\right)_{m \times g}$, where $h_{i 1}=\sum_{j=1}^{n} a_{i j} g_{j 1}$
$f_{i l}=\sum_{k=1}^{p} d_{i k} c_{k l}=\sum_{k=1}^{p}\left(\sum_{j=1}^{n} a_{i j} b_{j k}\right) c_{k l}$
$=\sum_{j=1}^{n} \mathrm{a}_{\mathrm{ij}}\left(\sum_{\mathrm{k}=1}^{\mathrm{p}} \mathrm{b}_{\mathrm{jk}} \mathrm{c}_{\mathrm{kl}}\right)=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \mathrm{h}_{\mathrm{jl}}=\mathrm{h}_{\mathrm{il}}$
$(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$

Theorem: Matrix multiplication is distributive over matrix addition i.e. if conformability is assured for the matrices A, B and C , then
i) $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$
ii) $(\mathrm{B}+\mathrm{C}) \mathrm{A}=\mathrm{BA}+\mathrm{CA}$

Sol. Proof:

Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)_{\mathrm{m} \times \mathrm{n}}, \mathrm{B}=\left(\mathrm{b}_{\mathrm{jk}}\right)_{\mathrm{n} \times \mathrm{p}}, \mathrm{C}=\left(\mathrm{c}_{\mathrm{jk}}\right)_{\mathrm{n} \times \mathrm{p}}$
$B+C=\left(d_{j k}\right)_{n \times p}$, where $d_{j k}=b_{j k}+c_{j k}$
$A(B+C)=\left(x_{i k}\right)_{m \times p}$, where $x_{i k}=\sum_{j=1}^{n} a_{i j} d_{j k}$
$A B=\left(f_{i k}\right)_{m \times p}$, where $f_{i k}=\sum_{j=1}^{n} a_{i j} b_{j k}$
$A C=\left(g_{i k}\right)_{m \times p}$, where $g_{i k}=\sum_{j=1}^{n} \mathrm{a}_{\mathrm{ij}} \mathrm{c}_{\mathrm{jk}}$
$A B+A C=\left(y_{i k}\right)_{m \times p}$, where $y_{i k} \Rightarrow f_{i k}+g_{i k}$
$\mathrm{x}_{\mathrm{ik}}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \mathrm{d}_{\mathrm{jk}}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}}\left(\mathrm{b}_{\mathrm{jk}}+\mathrm{c}_{\mathrm{jk}}\right)$
$=\sum_{j=1}^{n} a_{i j} b_{j k}+\sum_{j=1}^{n} a_{i j} c_{j k}=f_{i k}+g_{i k}=y_{i k}$
$\therefore \mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$

Similarly we can prove that

$$
(\mathrm{B}+\mathrm{C})=\mathrm{BA}+\mathrm{CA} .
$$

Theorem: If A is any matrix, then $\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}$.

Sol. Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)_{\mathrm{m} \times \mathrm{n}}$
$A^{T}=\left(a_{j i}^{\prime}\right)_{n \times m}$, where $a_{j i}^{\prime}=a_{i j}$
$\left(A^{T}\right)^{T}=\left(a_{j i}^{\prime \prime}\right)_{m \times n}$, where $a_{i j}^{\prime \prime}=a_{j i}$
$\mathrm{a}_{\mathrm{ij}}^{\prime \prime}=\mathrm{a}_{\mathrm{ji}}^{\prime}=\mathrm{a}_{\mathrm{ij}}$
$\therefore\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}$

Theorem: If A and B are two matrices o same type, then $(A+B)^{T}=A^{T}+B^{T}$.

Proof:

Let $A=\left(a_{i j}\right)_{m \times n}, B=\left(b_{i j}\right)_{m \times n}$
$A+B=\left(c_{i j}\right)_{m \times n}$, where $c_{i j}=a_{i j}+b_{i j}$ 。
$(A+B)^{T}=\left(c_{j i}^{\prime}\right)_{n \times m}, c_{j i}^{\prime}=c_{i j}$
$\mathrm{A}^{\mathrm{T}}=\left(\mathrm{a}_{\mathrm{ji}}^{\prime}\right)_{\mathrm{nxm}}$, where $\mathrm{a}_{\mathrm{ji}}^{\prime}=\mathrm{a}_{\mathrm{ij}}$
$B^{T}=\left(b_{j i}^{\prime}\right)_{n \times m}$, where, $b_{k j}^{\prime}=b_{j k}$
$A^{T}+B^{T}=\left(d_{j i}\right)_{n \times m}$, where $d_{j i}=a_{j i}^{\prime}+b_{j i}^{\prime}$
$c_{j i}^{\prime}=c_{i j}=a_{i j}+b_{i j}=a_{j i}^{\prime}+b_{j i}^{\prime}=d_{j i}$
$\therefore(\mathrm{A}+\mathrm{B})^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}+\mathrm{B}^{\mathrm{T}}$

Theorem: If A and B are two matrices for which conformability for multiplication is assured, then $(A B)^{T}=B^{T} A^{T}$.

Sol. Proof: Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)_{\mathrm{m} \times \mathrm{n}}, \mathrm{B}=\left(\mathrm{b}_{\mathrm{ji}}\right)_{\mathrm{n} \times \mathrm{p}}$
$\mathrm{AB}=\left(\mathrm{c}_{\mathrm{ik}}\right)_{\mathrm{m} \times \mathrm{p}}$, where $\mathrm{c}_{\mathrm{ik}}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \mathrm{b}_{\mathrm{jk}}$
$(A B)^{T}=\left(c_{k i}^{\prime}\right)_{p \times m}$, where $c_{k i}^{\prime}=c_{i k}$
$A^{T}=\left(a_{j i}^{\prime}\right)_{n \times m}$, where $a_{j i}^{\prime}=a_{i j}$
$B^{T}=\left(b_{k j}^{\prime}\right)_{p \times n}$, where $b_{k j}^{\prime}=b_{j k}$
$B^{T} \cdot A^{T}=\left(d_{k i}\right)_{p \times m}$, where $d_{k i}=\sum_{j=1}^{n} b_{k j}^{\prime} \mathrm{a}_{\mathrm{ji}}^{\prime}$
$c_{k i}^{\prime}=c_{i k}=\sum_{j=1}^{n} a_{i j} b_{j i}=\sum_{j=1}^{n} b_{k j}^{\prime}{ }^{\prime}{ }^{\prime}{ }_{j i} d_{k i}$
$\therefore(A B)^{T}=B^{T} A^{T}$

Theorem: If A and B are two invertible matrices of same type then $A B$ is also invertible and $(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}$

Sol. Proof: A is invertible matrix $\Rightarrow A^{-1}$ exists and $A A^{-1}=A^{-1} A=I$.
B is an invertible matrix $\Rightarrow B^{-1}$ exists and

$$
\begin{aligned}
& \mathrm{BB} \mathrm{~B}^{-1}=\mathrm{B}^{-1} \mathrm{~B}=\mathrm{I} \\
& \text { Now }(\mathrm{AB})\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)=\mathrm{A}\left(\mathrm{BB}^{-1}\right) \mathrm{A}^{-1} \\
& \\
& =\mathrm{AIA}^{-1}=\mathrm{AA}^{-1}=\mathrm{I} \\
& \\
& \quad=\mathrm{B}^{-1} \mathrm{IB}=\mathrm{B}^{-1} \mathrm{~B}=\mathrm{I} \\
& \left(\mathrm{~B}^{-1} \mathrm{~A}^{-1}\right)(\mathrm{AB})=\mathrm{B}^{-1}\left(\mathrm{~A}^{-1} \mathrm{~A}\right) \mathrm{B} \quad \therefore \mathrm{AB} \text { is invertible and } \\
& \therefore(\mathrm{AB})\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)=\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)=\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)(\mathrm{AB})=1 \\
& (\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1} .
\end{aligned}
$$

Theorem: If A is an invertible matrix then A^{T} is also invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
Sol. Proof: A is invertible matrix $\Rightarrow A^{-1}$ exists and $A A^{-1}=A^{-1} A=I$

$$
\begin{aligned}
& \left(\mathrm{AA}^{-1}\right)^{\mathrm{T}}=\left(\mathrm{A}^{-1} \mathrm{~A}\right)^{\mathrm{T}}=\mathrm{I}^{\mathrm{T}} \\
& \Rightarrow\left(\mathrm{~A}^{-1}\right)^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}\left(\mathrm{~A}^{-1}\right)^{\mathrm{T}}=\mathrm{I} \\
& \Rightarrow \text { By def. }\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}=\left(\mathrm{A}^{-1}\right)^{\mathrm{T}}
\end{aligned}
$$

Theorem: If A is a non-singular matrix then A is invertible and $A^{-1}=\frac{\operatorname{AdjA}}{\operatorname{det} A}$.

Sol. Proof: Let $A=\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right]$ be a non-singular matrix.
$\therefore \operatorname{det} \mathrm{A} \neq 0$.
$\operatorname{Adj} \mathrm{A}=\left[\begin{array}{lll}\mathrm{A}_{1} & \mathrm{~A}_{2} & \mathrm{~A}_{3} \\ \mathrm{~B}_{1} & \mathrm{~B}_{2} & \mathrm{~B}_{3} \\ \mathrm{C}_{1} & \mathrm{C}_{2} & \mathrm{C}_{3}\end{array}\right]$
$A \cdot \operatorname{Adj} A=\left[\begin{array}{ccc}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right]\left[\begin{array}{lll}A_{1} & A_{2} & A_{3} \\ B_{1} & B_{2} & B_{3} \\ C_{1} & C_{2} & C_{3}\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
a_{1} A_{1}+b_{1} B_{1}+c_{1} C_{1} & a_{1} A_{2}+b_{1} B_{2}+c_{1} C_{2} & a_{1} A_{3}+b_{1} B_{3}+c_{1} C_{3} \\
a_{2} A_{1}+b_{2} B_{1}+c_{2} C_{1} & a_{2} A_{2}+b_{2} B_{2}+c_{2} C_{2} & a_{2} A_{3}+b_{2} B_{3}+c_{2} C_{3} \\
a_{3} A_{1}+b_{3} B_{1}+c_{3} C_{1} & a_{3} A_{2}+b_{3} B_{2}+c_{3} C_{2} & a_{3} A_{3}+b_{3} B_{3}+c_{3} C_{3}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\operatorname{det} A & 0 & 0 \\
0 & \operatorname{det} A & 0 \\
0 & 0 & \operatorname{det} A
\end{array}\right]=\operatorname{det} \mathrm{A}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\operatorname{det} \text { A I }
\end{aligned}
$$

$\therefore \mathrm{A} \cdot \frac{\operatorname{Adj} \mathrm{A}}{\operatorname{det} \mathrm{A}}=\mathrm{I}$

Similarly we can prove that $A \cdot \frac{\operatorname{AdjA}}{\operatorname{det} A}=I$
$\therefore \mathrm{A}^{-1}=\frac{\operatorname{Adj} \mathrm{A}}{\operatorname{det} \mathrm{A}}$

