

Test Paper Code: BT

Time: 3 Hours

Maximum Marks: 100

INSTRUCTIONS

A. General:

- 1. This Booklet is your Question Paper. It contains 20 pages and has 100 questions.
- The Question Booklet Code is printed on the right-hand top corner of this page.
- The Question Booklet contains blank spaces for your rough work. No additional sheets will be provided for rough work.
- Non-Programmable Calculator is <u>ALLOWED</u>. But clip board, log tables, slide rule, cellular phone and other electronic gadgets are NOT ALLOWED.
- 5. Write your Name and Registration Number in the space provided at the bottom.
- All answers are to be marked only on the machine gradable Objective Response Sheet (ORS) provided along with this booklet, as per the instructions therein.
- The Question Booklet along with the Objective Response Sheet (ORS) must be handed over to the Invigilator before leaving the examination hall.

B. Filling-in the ORS:

- Write your Registration Number in the boxes provided on the ORS and darken the appropriate bubble under each digit of your Registration Number using a black ink ball point pen.
- Ensure that the code on the Question Booklet and the code on the ORS are the same.
 If the codes do not match, report to the Invigilator immediately.
- On the ORS, write your Name, Name of the Test Centre and put your signature in the appropriate box with ball-point pen. Do not write these anywhere else.

C. Marking of Answers on the ORS:

- Each question has 4 choices for its answer: (A), (B), (C) and (D). Only ONE of them
 is the correct answer.
- On the left-hand-side of ORS, for each question number, darken ONLY one bubble corresponding to what you consider to be the most appropriate answer, from among the four choices.
- There will be negative marking for wrong answers. Please see the Marking Scheme.

MARKING SCHEME:

- (a) For each correct answer, you will be awarded 1 (One) mark.
- (b) For each wrong answer, you will be awarded -1/3 (Negative 1/3) mark.
- (c) Multiple answers to a question will be treated as a wrong answer.
- (d) For each un-attempted question, you will be awarded 0 (Zero) mark.

Name				
Registration Number				

Q.1	Mate	Match the proteins listed in column I with their major cellular function in Column II:									
		1				П					
	(i) (ii) (iii) (iv)	TATA binding protei DNA primase Aminoacyl tRNA syn RecA			(p) (q) (r) (s)	Replication Recombination Transcription Translation					
	(A) (C)	(i)-(p), (ii)-(r), (iii)-(s (i)-(r), (ii)-(p), (iii)-(s			(B) (D)	(i)-(q), (ii)-(r) (i)-(q), (ii)-(p					
Q.2	Amo	ongst the following, the	elongated, fib	rous pr	otein i	is					
	(A)	Myoglobin (B)	Keratin		(C)	Albumin	(D)	Calmodulin			
Q.3	The	mutation likely to caus	e the least pert	urbatio	n in th	ne tertiary struc	ture of a	protein is			
	(A) (C)	Lysine to Aspartate Aspartate to Glutama	te		100700	Lysine to Valine Aspartate to Isoleucine					
Q.4	Mate	ch the techniques in col	umn I with the	eir prim	ary ap	plications in C	olumn II	:			
		1				11					
	(i) (ii) (iii) (iv) (A)	Circular Dichroism Ion exchange chroma Immunoprecipitation X-ray crystallography (i)-(q), (ii)-(s), (iii)-(p		(p) (q) (r) (s)	Iden: Seco	nic resolution s tifying protein- endary structure tration of protein (i)-(q), (ii)-(s)	protein in of prote in mixtur	nteraction ins es			
	(C)	(i)-(r), (ii)-(p), (iii)-(s			(D)	(i)-(r), (ii)-(s)					
Q.5	Amo	ongst the following stat	ements about	biologi	ical m	embranes, the	INCORR	ECT one is that			
	(A) (B) (C) (D)	are covalent assembli form selectively perm may have channels an show fluid-like behav	eable barriers d pumps		ins						
Q.6		introduction of a new species from the lake is			ke rest	alting in the ex	tinction (of several native			
	(A)	Co-extinction			(B)	Alien species	invasion				

Q.7	The	taxonomic hiera	irchy in d	escending o	rder of size	15				
	(A) (C)	Family, Class, Class, Phylum			(B (D		Phylum, Class, Order, Family,			
					300		. 0.00000000000000000000000000000000000			
Q.8	If the	ne recessive disc a frequency of	ease phen	ylketonuria), the freque	(PKU) oc	cui	rs in a genetica rrier genotype is	illy con	stant populat	ion
	(A)	0.99%	(B)	19.9%	(C)	1.99%	(D)	9.9%	
Q.9	Amj an a	olification of a I garose gel. For s	ONA frag uch a san	ment by PC	R yields or st way to inc	nly	one faint band ase the yield of	of the	expected size R product is to	on
	(A)	decrease magn	esium ior	concentrat	ion					
	(B)	decrease annea	ling temp	erature						
	(C)	use shorter prii								
	(D)	increase extens	sion time							
Q.10	The	cellular organell	e which f	unction(s) a	is a store fo	r C	ca ²⁺ ions is			
	(A)	Endoplasmic re	eticulum		(B)	Golgi bodies			
	(C)	Endosomes			(D)	Nucleus			
Q.11		ne N-terminal 2 tion after synthes			missing fr	ron	n a mitochondr	ial pro	tein, its cellu	llar
	(A)	Mitochondria			(B))	Cytosol			
	(C)	Nucleus			(D)	Plasma membr	ane		
Q.12	Pack	aged biomateria	ls are dis	patched to it	ntracellular	an	d extracellular l	ocation	s from the	
	(A)	cis-compartme	nt of the	golgi compl	ex					
	(B)	medial-compar	rtment of	the golgi co	mplex					
	(C)	trans-comparti	nent of th	e golgi con	plex					
	(D)	apical-compar	tment of t	he golgi co	mplex					
Q.13	The	preferred ligand	for SH2	domain is						
	(A)	serine-phospho	orylated p	eptide	(B))	tyrosine-phospl	horylate	ed peptide	
	(C)	glucose-6-Phos	sphate	Section March 1	(D		cyclic AMP		er e	

Q.14	The binding of a hormone to its receptor activates adenylyl cyclase through a stimulatory G protein. If, due to a mutation, the G-protein binds but does NOT hydrolyze GTP, the consequence will be										
	(B) (C)	Adenylyl cyclase will be continuously Adenylyl cyclase will never be activate Adenylyl cyclase will be occasionally Adenylyl cyclase will be degraded	ed								
Q.15	100 000		vice the r	normal amount of DNA in a dividing							
Serve		nmalian cell, most likely blocks the cell		formal allowing of Divid in a dividing							
	(A)	during Go phase	(B)	after G ₁ phase							
	(C)	after M phase	(D)	during G2 phase							
Q.16		Bt toxin, produced by $Bacillus\ thuringiensis$, does NOT kill the bacteria itself because the toxin is									
	(A) isolated in a special intracellular sac										
	(B)	in an inactive form inside the bacterial	cell								
	(C)	active only against eukaryotic ribosom	es								
	(D)	produced in very small quantities									
Q.17	The	inactivation of an mRNA due to its bind	ing to a co	emplementary RNA molecule is called							
	(A)	RNA interference	(B)	RNA splicing							
	(C)	RNA translation	(D)	RNA looping							
Q.18		en are the sequences of one strand of ing point (Tm) is	double-str	anded DNA. The one with the highest							
	(A)	GAGATCTCGAGATCTC	(B)	GAGATCTTGATATCTC							
	(C)	GAGATATCGATATCTC	(D)	GAGATATCTATATCTC							
Q.19		standard pregnancy kit, used to detect l sed on	Human Ch	orionic Gonadotrophin (HCG) in urine,							
	(A)	gene amplification through PCR	(B)	antigen-antibody interaction							
	(C)	biotin-streptavidin interaction	(D)	nickel affinity chromatography							
Q.20	The	preferred system for large-scale product	ion of influ	uenza virus for vaccination is							
	(A)	genetically modified bacteria	(B)	transgenic plant							
	(C)	chick embryo	(D)	yeast culture							

Q.21		onoclonal antib X in an ELISA		The state of the s	small pept	ide derived fro	m proteii	X, is unable to	
	(A) (B) (C) (D)	the peptide ep monoclonal ar	itope is on tibodies	NOT bind to im exposed in X s CANNOT be buried in the int	used in ELI				
Q.22	The	lac repressor is	produce	d from a stretch	of DNA ca	alled the			
	(A)	regulator	(B)	operator	(C)	promoter	(D)	inducer	
Q.23	The	repeating units	in chitin	are					
	2.1	(α 1-4 GlcNA	300	•	(B)				
	(C)	(α 1-4 GalNA	c)		(D)	(β 1-4 GalNA	(C)		
Q.24		correct ascend (P) and stearic			oints of ole	eic acid (O), li	noleic ac	cid (L), palmitic	
	(A)	L, O, P, S	(B)	O, L, P, S	(C)	L, O, S, P	(D)	O, L, S, P	
Q.25		eptide Glu-Hi					oelectric	point of 7.8, is	
	(A)	anode		Z()	(B)	cathode			
	(C)	both anode an	d cathod	le	(D)	neither anode	nor cath	ode	
Q.26		y diffraction of A on steaming.						ch is changed to	
	120010	β-sheet to ran β-sheet to $α$ -h		l.	A (1)	α-helix to ran α-helix to β-			
Q.27	At E 9.6	$E_t = 20 \text{ nm and } t$ $\mu \text{M s}^{-1}$. Assum	substrate	e concentration to be 600 s ⁻¹ , t	= 40 μ M, the K_M will	he reaction vel be	ocity V ₀	of an enzyme is	
	(A)	$0.1~\mu M$	(B)	1 μΜ	(C)	$10~\mu M$	(D)	$100~\mu M$	
Q.28	Whi	ch of the follow	ving state	ements is NOT	true for an	enzyme catalyz	ed reacti	on?	
	(A)	Reaction rate	and equ	ilibrium both ar	e altered				
	(B) Activation energy is decreased								
	(C) Enzyme-substrate complex is formed								
	(D)	Enzymes und	ergo ind	uced fit on subs	trate bindir	ıg			

Q.29	Whie	ch of the following is NOT an allosteric	regulatory	enzyme in glycolysis?
	(A)	Hexokinase	(B)	Phospho-fructokinase I
	(C)	Phosphoglycerate kinase	(D)	Pyruvate kinase
Q.30	Mate	th the enzymes of TCA cycle in Group	I with that	of their products listed in Group II.
		Group I	Grou	ıp II
	0.500.50	Isocitrate dehydrogenase Succinate dehydrogenase Fumarase α-Ketoglutarate dehydrogenase P-1, Q-2, R-4, S-3 P-2, Q-4, R-3, S-1		α-Ketoglutarate Succinyl CoA Fumarate Malate P-3, Q-1, R-2, S-4 P-1, Q-3, R-4, S-2
Q.31	Addi	ition of the uncoupler 2,4- Dinitrophene	ol to active	ly respiring mitochondria causes
	(A) (B) (C) (D)	decrease in ATP production and incre decrease in ATP production and decre increase in ATP production and incre increase in ATP production and decre	eased rate o	f O ₂ consumption f O ₂ consumption
Q.32	C ₄ p	lants overcome photorespiration activit	y of Rubisc	to by fixing CO2_ firstly as
	(A) (C)	oxaloacetate 2-phosphoglycerate	(B) (D)	3-phosphoglycerate ribulose 1,5-bisphosphate
Q.33	Whi	ch of the following is a non-symbiotic	nitrogen fix	ing bacteria?
	(A) (C)	Rhizobium leguminosarum Azotobacter chrococcum	(B) (D)	Nitrosomonas nitrosus Alcaligenes faecalis
Q.34		opressin, an antidiuretic hormone, res sey, is secreted from	ponsible fo	or increased absorption of water by the
	(A)	adrenal gland	(B)	thyroid gland
	(C)	pituitary gland	(D)	parathyroid gland

Q.35	Mat	ch the vitamins in Grou	ip I with their d	eficie	ncy di	sorders listed in	n Group II.		
		Group I			Gro	up II			
	Ρ,	Thiamin		1.	Perm	icious anemia			
	Q.	Cholecalciferol		2.	Pella	agra			
	R.	Niacin		3.	Rick	tets			
	S.	Cyanocobalamin		4.	Beri-beri				
	(A)	P-1, Q-2, R-3, S-4			(B)	P-4, Q-3, R-2	, S-1		
	(C)	P-2, Q-4, R-1, S-3			(D)	P-3, Q-1, R-4	, S-2		
Q.36	Whi	ch of the following enzy	ymes are secret	ed by	panere	eas?			
	P.	Pepsin							
	Q.	Aminopeptidase							
	R.	Trypsin							
	S.	Carboxypeptidase							
	Т.	Chymotrypsin							
	(A)	P, Q, R (B)	Q, R, T		(C)	R, S, T	(D) P,	R, T	
Q.37	Whi	ch part of the human bra	ain controls boo	ly ten	perati	are?			
	(A)	Cerebrum			(B)	Medulla			
	(C)	Cerebellum			(D)	Hypothalamu	s		
Q.38		action potential for i	nitiating and r	mainta	aining	the rhythmic	contraction	of heart is	
	(A)	sino-atrial node			(B)	atrio-ventricul	lar node		
	(C)	bundle of His			(D)	atrio-ventricul	lar bundle		
Q.39	The	antigen binding sites in	immunoglobul	in IgC	are p	resent at			
	(A)	variable region of hear	vy chains						
	(B)	variable region of ligh	t chains						
	(C)	constant region of hea	vy chains						
	(D)	variable region of hea	vy and light cha	ins					
Q.40	Ferti	lization of human spern	n and ovum tak	es pla	ce in t	he			
	(A)	ovary			(B)	uterine cavity			
	(C)	fimbriae-infundibulun	1		(D)	isthamus-amp	ulla junction		

Q.41	Mate	h the pathoger	nic micro	organisms in C	roup I with	the diseases l	isted in G	roup II.	
300		Group I		FG:		Group II			
	P.	Тгеропета р	allidum		1.	Whooping co	ough		
	Q.	Bordetella pe			2.	Yellow fever			
	R.	Flaviviruses			3.	Kala azar			
	S.	Leishmania a	lonovaní		4.	Syphilis			
	(A)	P-1, Q-4, R-3	S. S-2		(B)	P-4, Q-1, R-	2, S-3		
		P-4, Q-2, R-3			(D)	P-1, Q-3, R-	2, S-4		
Q.42		example of a		tic chemoorga	inotroph m	icroorganism	lacking	chlorophyll and	
	(A)	yeast	(B)	bacteria	(C)	fungi	(D)	protozoa	
Q.43		acillus sp. divi			ulture is ino	culated with 1	000 cells,	how many cells	
	(A)	30,000	(B)	64,000	(C)	90,000	(D)	128,000	
Q.44	The	selective medi	a mannito	ol salt agar is u	sed for the is	solation of			
	(A)	Lactobacillu	s		(B)	Enterococcu	S		
	(C)	Staphylococo	cus		(D)	Salmonella			
Q.45	glyc	olysis or glyo	ogen syr	thesis. If K_M	ilycolynis and	KM Glycogen co	rrespond	utilized towards to the enzymes nent amongst the	
	(A) (B)	NO glycoger	is forme	d at high gluco	se concentra	ations if K_M	$cotynis > K_A$	ysis < K _M Glycogen Glycogen (vecogen	
	(C) (D)	Olycolysis is	s favoured	at high glucose I at low glucos	e concentrati	tions if K_M^{Glye}	K_M	Olycogen	
Q.46	An enzyme requires both aspartate (pKa of side chain = 4.5) and histidine (pKa of side chain = 6.5) residues in the catalytic site to be protonated for activity. The expected enzyme activity (in %) at a pH of 5.5 would be closest to								
	(A)	90	(B)	78	(C)	50	(D)	10	

- Q.47 By weight, 95% of an E. coli cell's components are water (~70%), protein (~15%), nucleic acids (DNA ~ 1% + RNA ~ 6%) and polysaccharides (~3%). Given that there is only one chromosome and about 3000 different proteins in an E. coli cell lysate, the number of different molecules of DNA and RNA is expected to be
 - (A) DNA = RNA = 3000

(B) DNA = RNA > 3000

(C) DNA = 1, RNA > 3000

- (D) DNA > 3000, RNA = 1
- Q.48 Determine the correctness or otherwise of the following Assertion [a] and the Reason [r]. Assertion: The general trend across a period is an increase of the ionization energy. Reason: The potential energy of attraction between the electron and nucleus increases with the nuclear charge.
 - (A) Both [a] and [r] are true and [r] is the correct reason for [a]
 - (B) [a] is false but [r] is true
 - (C) Both [a] and [r] are true but [r] is NOT the correct reason for [a]
 - (D) Both [a] and [r] are false
- Q.49 The monomer which leads to a conducting polymer is
 - (A) but-2-yne

(B) E-but-2-ene

(C) Z-but-2-ene

- (D) buta-1,3-diene
- Q.50 The pH at the equivalence point when 50 mL of 0.1 M acetic acid is titrated against 0.1 M NaOH is closest to
 - (A) 6.0
- (B) 7.0
- (C) 8.0
- (D) 9.0
- Q.51 The mass (in g) of glycine, NH₂CH₂COOH, required to make 250 mL of a 0.015 M solution is (Atomic weights in amu: H = 1, C = 12, N = 14, O = 6)
 - (A) 1.13
- (B) 0.84
- (C) 0.56
- (D) 0.28
- Q.52 The arrangement of ligands in ascending order of the crystal field splitting is

(B) Γ < OH⁻ < H₂O < CN⁻</p>

(C) H₂O < OH⁻ < CN⁻ < I⁻

- (D) H₂O < CN < I < OH -
- Q.53 Determine the correctness or otherwise of the following Assertion [a] and the Reason [r].

Assertion: The boiling points of the group VIA (16) hydrides increase with size without exception.

Reason: London dispersion forces increase with molecular weight.

- (A) Both [a] and [r] are true and [r] is the correct reason for [a]
- (B) [a] is false but [r] is true
- (C) Both [a] and [r] are true but [r] is NOT the correct reason for [a]
- (D) Both [a] and [r] are false

Q.54 Determine the correctness or otherwise of the following Assertion [a] and the Reason [r].

Assertion: Boiling points of aldehydes and ketones are higher than the boiling points of the corresponding ethers and lower than alcohols.

Reason: The carbonyl group is polar but does not undergo intermolecular hydrogen bonding.

- (A) Both [a] and [r] are true and [r] is the correct reason for [a]
- (B) [a] is false but [r] is true
- (C) Both [a] and [r] are true but [r] is NOT the correct reason for [a]
- (D) Both [a] and [r] are false

Q.55 In the reaction sequence below, X, Y, and Z, respectively, are

- (A) Br₂, FeBr₃; MgCl₂; CH₂O, H^{*}
- (B) HBr; HgCl₂; CH₃CHO, H⁺
- (C) Br₂, hv; MgCl₂; CH₂O, H⁺

Q.56 On completion of the reaction

the Br atom is attached to carbon atom

- (A) w
- (B) x

- (C) y
- (D) z

Q.57 An aqueous solution is a mixture of a carboxylic acid (pK_a = 4.0) and an amine (pK_a of protonated amine = 10.0). To separate the components, the solution at a pH of 2.0 is shaken with diethyl ether. On standing, the

- (A) top water layer would contain the amine
- (B) top ether layer would contain the amine
- (C) top water layer would contain the acid
- (D) top ether layer would contain the acid

0.58 The major product, Z, obtained in the reaction

(A)
$$OH$$
(C) OH
(D) OH
(D) OH
(D) OH
(D) OH
(D) OH
(EXECUTE: A SECUTION AND ADDRESS OF THE ADDRESS

- The compound that shows a line in the ${}^{1}H$ NMR spectrum at the lowest δ value is Q.59
 - (A) CH₂Cl₂
- (B) CHCl₃
- (C) CH₃CI
- (D) CH₃I
- Water is injected into a balloon filled with ammonia gas. The balloon shrinks and it is hot to Q.60 touch. According to the convention $\Delta U = q + w$, for this process
 - (A) $q \ge 0, w \ge 0$ (B) $q \ge 0, w < 0$

- (C) q < 0, w > 0 (D) q < 0, w < 0
- A process CANNOT occur spontaneously at constant T and P when Q.61
 - (A) $\Delta H < 0$, $\Delta S < 0$

(B) $\Delta H < 0, \Delta S > 0$

(C) $\Delta H > 0$, $\Delta S < 0$

- (D) $\Delta H > 0$, $\Delta S > 0$
- If an atomic orbital has 2 radial nodes and 1 angular node, it is a Q.62
 - (A) 2p orbital
- (B) 3d orbital
- (C) 3p orbital
- (D) 4p orbital

Q.63 Determine the correctness or otherwise of the following Assertion [a] and the Reason [r].

Assertion: Water at 100 °C and 1 atm is acidic with a pH less than 7.

Reason: The ionic product of water, K_w , decreases when T increases because the enthalpy of the dissociation of water is endothermic.

- (A) Both [a] and [r] are true and [r] is the correct reason for [a]
- (B) [a] is false but [r] is true
- (C) Both [a] and [r] are true but [r] is NOT the correct reason for [a]
- (D) Both [a] and [r] are false
- Q.64 A mixture initially containing 2 mol of CO and 2 mol of H₂ comes to equilibrium with methanol, CH₃OH, as the product of the reaction CO (g) + 2H₂ (g) → CH₃OH (g). At equilibrium the mixture will contain
 - (A) 2 mol of methanol
 - (B) more than 1 mol but less than 2 mol of methanol
 - (C) 1 mol of methanol
 - (D) less than 1 mol of methanol
- Q.65 Given that the standard electrode potentials E^o ($Cu^{2+}|Cu$) = +0.340 V and E^o ($Cu^{+}|Cu$) = +0.522 V, the E^o ($Cu^{2+}|Cu^{+}$) is
 - (A) +0.862
- (B) +0.182
- (C) +0.158
- (D) -0.158
- Q.66 The number of water molecules required to balance the chemical reaction when MnO₄ is converted to MnO₂ in basic solution is
 - (A) 1
- (B) 2

- (C) 3
- (D) 4
- Q.67 For a reaction $a A + b B \rightarrow c C + d D$, the relation that holds is
 - (A) $a\frac{d[A]}{dt} = b\frac{d[B]}{dt} = c\frac{d[C]}{dt} = d\frac{d[D]}{dt}$
 - (B) $a\frac{d[A]}{dt} = b\frac{d[B]}{dt} = -c\frac{d[C]}{dt} = -d\frac{d[D]}{dt}$
 - (C) $\frac{1}{a} \frac{d[A]}{dt} = \frac{1}{b} \frac{d[B]}{dt} = \frac{1}{c} \frac{d[C]}{dt} = \frac{1}{d} \frac{d[D]}{dt}$
 - (D) $\frac{1}{a} \frac{d\{A\}}{dt} = \frac{1}{b} \frac{d\{B\}}{dt} = -\frac{1}{c} \frac{d\{C\}}{dt} = -\frac{1}{d} \frac{d\{D\}}{dt}$

Q.68		ch the type of tration in the right of			olum	n with	the frequency	of the	electromagnetic
	1.	Nuclear Spin			Ρ.	Infra	red		
	11.	Rotation			Q.	Ultra	violet-visible		
	III.	Vibration			R.	Radi	ofrequency		
	IV.	Electronic			S.	Micr	owave		
	(A)	I-P, II-Q, III-R,	IV-S			(B)	I-S, II-P, III-R,	IV-Q	
	(C)	I-R, II-S, III-P,	IV-Q			(D)	I-R, II-P, III-S,	IV-Q	
Q.69	The	postulates of Bol	ir's the	ory of the atom	are				
	(I)	Electrons move	in stal	ole circular orbi	ts arc	und th	e nucleus		
	(II)	Electrons may a	bsorb	light of specific	ener	gy and	be excited to h	igher er	nergy states
	(III)	Angular momer	ntum o	f electrons in st	able o	orbits i	s quantized		
	(IV)	Angular momen	ntum o	f electrons in st	able (orbits i	s uncertain		
	(A)	I, II, III, and IV	(B)	I and II		(C)	I, II, and III	(D)	I, II, and IV
Q.70	Dete	rmine the correct	ness o	r otherwise of t	he fol	lowin	g Assertion [a] a	ind the	Reason [r].
		rtion: Blood pres on: Human heart						eet.	
	(A)				corre	ct reas	son for [a]		
	(B)	[a] is false but [7.		275		929 E-21		
	(C) (D)	Both [a] and [r] Both [a] and [r]		67.0	T the	correc	t reason for [a]		
	(D)	Don't [a] and [i]	are ra	136					
Q.71		llyfish appearing d X. If the refrac							aquarium having
	(A)	1/n	(B)	n		(C)	1/2n	(D)	2 <i>n</i>
Q.72	The	dimensions of sh	ear str	iin are					
	(A)	$M^0L^TT^{-2}$	(B)	$M^1L^1T^{-2}$		(C)	$M^0L^1T^0$	(D)	$M^0L^0T^0$
Q.73	In S.	I. units, electric	flux, v	which is the do	t proc	luct of	electric field in	ntensity	and area vector,
	(A)	C/m ² N	(B)	Cm ² /N		(C)	Nm ² /C	(D)	N/m ² C
				BT-1	2/20				

	(C) (D)							e infinite
Q.75	If a l	human heart bea	ts at an	average freq	uency of 1.25	Hz, the n	umber of beats	per minute is
	(A)		(B)			85		120
Q.76	$[K^{\dagger}]$	a mammalian out = 4 mM, an oximate potassii	d, the i	intracellular	potassium i	acellular on concen	potassium ior tration, [K ⁺] _{in}	concentration, = 128 mM, the
		<i>ime:</i> Faraday's coerature = 37°C	onstant	$=9.65\times10^4$	C mol ⁻¹ ; Gas	constant	= 8.31 J K ⁻¹ m	ol ⁻¹ ; mammalian
	(A)	-47	(B)	-94	(C)	-27	(D)	0
Q.77	Opti	cal resolution of	a light	microscope	is limited by			
	(A) (C)	Size of the spe Intensity of lig		eing observ	ed (B) (D)		specimen stage ngth of visible	
Q.78	pH	eous environme 5.0, in order to gadro's number	denatu	re and hyd	rolyze the m	aterial inte	ernalized by a	diameter, is at a cell. Assuming is closest to
	(A)	24	(B)	3	(C)	2400	(D)	300
Q.79	New	ton's second lav	v of mot	ion deals wi	ith			
	(A) (B) (C) (D)	conservation of acceleration of rate of change the magnitude	a body of mom	as a result of	of applying an result of apply	external f ying an ex	orce ternal force	
Q.80		e work done by beat, the appro-						" of 0.8 seconds in a day is
	Assi	ume: 1 calorie =	4.2 Jou	les				
	(A)	13	(B)	26	(C)	130	(D)	260
Q.81		maximum depernal pressure of			by a resear	ch subma	rine, designed	to withstand an
	Assi	ume: Density o	of water	r = 1000 k water surfac	e = 1 atm = 1	ration du 0 ⁵ Pa	e to gravity	= 10 m/s ² , and,
		99	(B)	990		9900	(D)	99000
				В	T-13/20			

gives a fundamental limitation to the efficiency of a heat engine deals with thermal equilibrium leading to the concept of temperature

The zeroth law of thermodynamics

Q.74

Q.82	The (dia	number of v	vater mole) having 20	cules present % (V/V) wat	in a 300 res er is closest t	idue solubl	e protein of	spherica	l shape
	Assi	ume: density	of water =	1000 kg/m ³ ,	Avogađro's n	umber = 6 >	10 ²³ .		
	(A)	224	(B)	9	(C)	140	(D)	28	
Q.83	sequ			and C, occuprobability					
	(A)	0.06250	(B)	0.01563	(C)	0.00391	(D)	0.00098	8
Q.84	inste	ead of 20, and	l a codon s	with 5 nucleo ize of 2 bases the degenera	instead of 3.	Assuming			
	(A)	is likely to l	be more tha	in ours	(B)	is likely to	be less than	ours	
	(C)	is likely to l	be identical	to ours	898	does NOT			
Q.85	sour 4 co	ces. Of the 2	0 colonies, olize both s	r on an agar j , microbes in sucrose and co	12 colonies	can metabo	olize sucrose	. If micr	obes in
	(A)	4	(B)	8	(C)	12	(D)	20	
Q.86	from sequ diffe imm	200 different ence. Further rent V segme	t V segmen r, a light c ents with 5	oglobulin is a nts, 12 D segr hain results to different J s num number o	nents and 4 J from recomb egments. If a	segments f ination of a heavy cha	rom the corr one segment in and a ligh	esponding each fro at chain f	g DNA om 200 orm an
	(A)	10^{3}	(B)	10 ⁵	(C)	10^7	(D)	10°	
Q.87	emp	irical equatio	n W (in g)	newly discove = (x) ⁿ , where t statement ar	x = 1.01 and	d n = numb			
	(A)	A colony of	one millio	n cells is ligh	ter than a dos	2			
	(B)			n cells is hear	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	(C) A colony of one million cells weighs the same as a dog								
	(D)	None of the				150			

				В	Γ-15/20			
	(A)	A	(B)	В	(C)	AB	(D)	O
Q.94	of P	anka has blood riyanka's grand of either of her	mother	s had blood ty	vpe AB, and	is B and assuming	father's blood g NO child wa	type is A. If both as adopted, blood
	(A) (C)	the tri-peptide the tri-peptide			(B) (D)	3.600.4.5	peptide is circu peptide forms	
Q.93	amir tri-p	no acids. If are eptide is zero,	a of th	e triangle for	med by join	ning the	of Cα atoms coordinates of peptide is circu	of its constituent f Cα atoms of a
	(A) (B) (C) (D)	The transcripti The transcripti The transcripti None of the ab	on fact	or is perpendic	cular to the I	NA segn	nent A segment	
Q.92		raight DNA segred by $4\hat{i} - 4\hat{j} +$						nscription factor
	100	cos ⁻¹ (-1/3)						
					$-\hat{j}+\hat{k}$			
Q.91	The	angle between to	vo line	ar transmembr $\vec{a} = \hat{i}$	rane domains $+\hat{j} - \hat{k}$	defined l	by the following	ng vectors
	(A) (C)	$pq + qr + pr$ $p^2 + q^2 + r^2$			(B) (D)	pqr None of	f the above	
Q.90	(p, q	+r), (q, r+p), a	and $(r, pied by$	p+q) are the the three atom	coordinates	of 3 co	-planar atoms	in a molecular
	(A)	0.2	(B)	1.0	(C)	1.2	(D)	2
Q.89	Two are h	linear and paralle ydrogen bonded	l RNA togeth	strands, define er. The distance	ed by the equ e between the	ations 3x- ne two str	-4y + 6 = 0 and and is	d 3x - 4y + 5 = 0
	(A)	(3, 3, 3)	(B)	(3, 1, 3)	(C)	(1, 3, 1)	(D)	(1, 1, 1)
Q.88	coord	n that a hetero-ti linates (1, 1, 2), iangle formed by	(3, -5,	7) and (-1, 7	, -6) respect	tively, the	th their center coordinates o	of masses at the f the centroid of

Given that you have 2 parents, 4 grandparents, 8 great grand parents, and so on, the number of 0.95 your ancestors during ten (10) generations of your family preceding you is (A) 510 (B) 1022 (C) 2046 (D) 4090 The intracellular non-enzymatic fractional degradation of a compound X, f(x), is related to its 0.96concentration x through $f(x) = \lim_{x \to 0} \frac{\sqrt{1+x}-1}{x}$. At a negligible concentration of X, its fractional degradation is (A) 0.00 (B) 0.25 (C) 0.50 (D) 0.75 The distance x (in μ m) covered by a molecule starting from point A at time t = 0 and stopping 0.97at another point B is given by the equation $x = t^2 \left(2 - \frac{t}{3} \right).$ The distance between A and B (in µm) is closest to

0.98Dependence of the weight, y (in kg), of an organism on the number of hours, x, when it is in motion, is given by the differential equation

$$\frac{dy}{dx} = -4xy^2, \ y \neq 0.$$

Given that y = 1, when x = 0, the weight of the organism after moving for one hour is

(A) 0.11

(A) 10.7

(B) 0.33

(B) 20.7

(C) 0.67

(C) 40.7

(D) 0.75

(D) 50.7

A hospital has 35 patients, 24 of which are HIV+ and 16 have TB infection. All patients have 0.99at least one of the two infections. The number of patients with both HIV and TB infections is

(A) 5

(B) 8

(C) 9

(D) 11

Q.100 The average weight of four kids is 29.6 kg. If three of the kids weigh 29.8 kg, 28.6 kg and 29.7 kg respectively, the weight of the fourth kid (in kg) is

(A) 29.3

(B) 29.6

(C) 30.3

(D) 30.6

Solution Keys for BT Test Paper - JAM 2014

Cod	le - A	Cod	le - B		Cod	de - C		Code	e - D
\mathbf{C}	1	В	1	_	D	1		\mathbf{C}	1
В	2	\mathbf{C}	2	_	A	2		A	2
\mathbf{C}	3	В	3	_	В	3		A	3
D	4	A	4	_	A	4		D	4
A	5	В	5		В	5		X	5
В	6	\mathbf{C}	6	_	D	6		В	6
В	7	В	7	_	C	7		В	7
\mathbf{C}	8	D	8	_	A	8		C	8
В	9	A	9	_	C	9		C	9
A	10	В	10	_	A	10		A	10
В	11	A	11	_	A	11		В	11
\mathbf{C}	12	В	12	_	D	12		A	12
В	13	D	13	_	X	13		C	13
A	14	\mathbf{C}	14		В	14		В	14
D	15	A	15		В	15		C	15
В	16	В	16	_	C	16		В	16
A	17	\mathbf{C}	17		C	17		C	17
A	18	D	18		В	18		X	18
В	19	A	19	-	В	19	'	D	19
C	20	D	20	_	D	20		D	20
D	21	D	21		C	21		A	21
A	22	\mathbf{C}	22		C	22		D	22
В	23	A	23		C	23		A	23
A	24	A	24	_	A	24		В	24
В	25	D	25		В	25		A	25
D	26	X	26		A	26		C	26
\mathbf{C}	27	В	27	_	C	27		В	27
A	28	В	28		A	28		C	28
\mathbf{C}	29	A	29	_	D	29		D	29
D	30	D	30	_	В	30		A	30
A	31	C	31	_	A	31		D	31
A	32	C	32	_	A	32		D	32
\mathbf{C}	33	D	33	_	В	33		D	33
\mathbf{C}	34	\mathbf{C}	34	_	C	34		D	34
В	35	\mathbf{C}	35		В	35		A	35
\mathbf{C}	36	В	36		C	36		C	36
D	37	В	37	_	В	37		C	37
A	38	D	38		C	38		В	38
D	39	\mathbf{C}	39		X	39	'	C	39
D	40	D	40		D	40		D	40
							•		

Solution Keys for BT Test Paper - JAM 2014

Cod	le - A	Cod	le - B	_	Coc	le - C	-	Code	e - D
В	41	D	41	_	D	41		A	41
\mathbf{C}	42	A	42		D	42		A	42
В	43	\mathbf{C}	43		\mathbf{C}	43		C	43
\mathbf{C}	44	\mathbf{C}	44		В	44		C	44
X	45	В	45		D	45		В	45
D	46	\mathbf{C}	46		D	46		A	46
\mathbf{C}	47	\mathbf{C}	47		A	47		В	47
Α	48	A	48		D	48		D	48
Α	49	В	49		A	49		В	49
D	50	A	50		В	50		C	50
X	51	\mathbf{C}	51		A	5 1		A	5 1
В	52	\mathbf{C}	52		C	52		В	52
В	53	В	5 3		В	53		D	5 3
A	54	\mathbf{C}	54		C	54		A	54
D	55	D	55	-	В	55		В	55
В	56	A	56	-	A	56		A	56
D	57	В	57	-	В	57		В	57
A	58	A	58	-	C	58		D	58
D	59	D	59		В	59		C	59
\mathbf{C}	60	В	60		В	60		A	60
\mathbf{C}	61	A	61		C	61		C	61
D	62	A	62		D	62		C	62
D	63	В	63		A	63		В	63
D	64	C	64		D	64		В	64
\mathbf{C}	65	C	65		D	65		D	65
В	66	D	66		A	66		C	66
D	67	A	67		D	67	•	\mathbf{A}	67
\mathbf{C}	68	A	68		C	68		D	68
\mathbf{C}	69	C	69		C	69		В	69
В	70	C	70	-	D	70		A	70
В	71	В	71	-	D	71		A	71
D	72	C	72		D	72		В	72
\mathbf{C}	73	В	73		A	73		C	73
В	74	C	74	-	C	74	•	D	74
A	75	X	75	-	C	75	•	D	75
В	76	D	76		В	76	•	\mathbf{C}	76
D	77	A	77		\mathbf{C}	77	•	В	77
В	78	D	78		В	78	•	D	78
C	79	В	79		\mathbf{C}	79	•	В	79
A	80	D	80		D	80	•	C	80
				-					

Solution Keys for BT Test Paper - JAM 2014

Code - A				
В	81			
D	82			
D	83			
A	84			
\mathbf{C}	85			
\mathbf{C}	86			
В	87			
D	88			
A	89			
D	90			
A	91			
В	92			
A	93			
\mathbf{C}	94			
\mathbf{C}	95			
\mathbf{C}	96			
A	97			
В	98			
A	99			
C	100			

Code - B						
D	81					
D	82					
C	83					
В	84					
D	85					
В	86					
A	87					
В	88					
D	89					
В	90					
\mathbf{C}	91					
A	92					
В	93					
D	94					
A	95					
D	96					
A	97					
В	98					
A	99					
C	100					
· · · · · · · · · · · · · · · · · · ·						

Code - C					
A	81				
В	82				
C	83				
D	84				
A	85				
A	86				
C	87				
C	88				
Α	89				
D	90				
В	91				
D	92				
В	93				
A	94				
В	95				
D	96				
В	97				
C	98				
A	99				
В	100				

Code - D					
В	81				
A	82				
В	83				
\mathbf{C}	84				
В	85				
A	86				
D	87				
\mathbf{C}	88				
\mathbf{C}	89				
D	90				
\mathbf{C}	91				
В	92				
C	93				
D	94				
A	95				
В	96				
A	97				
D	98				
В	99				
D	100				