RST No.: 140044377 This booklet contains 24 printed pages. ## PAPER - 1: PHYSICS, CHEMISTRY & MATHEMATICS Do not open this Test Booklet until you are asked to do so. Read carefully the Instructions on the Back Cover of this Test Booklet. Test Booklet Code ## Important Instructions: - Immediately fill in the particulars on this page of the Test Booklet with Blue/Black Ball Point Pen. Use of pencil is strictly prohibited. - The Answer Sheet is kept inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully. - The test is of 3 hours duration. - 4. The Test Booklet consists of 90 questions. The maximum marks are 360. - There are three parts in the question paper A, B, C consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each question is allotted 4 (four) marks for each correct response. - 6. Candidates will be awarded marks as stated above in instruction No. 5 for correct response of each question. ¼ (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet. - There is only one correct response for each question. Filling up more than one response in each question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instruction 6 above. - 8. Use Blue/Black Ball Point Pen only for writing particulars/marking responses on Side-1 and Side-2 of the Answer Sheet. Use of pencil is strictly prohibited. - No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. except the Admit Card inside the examination hall/room. - Rough work is to be done on the space provided for this purpose in the Test Booklet only. This space is given at the bottom of each page and in 3 pages (Pages 21 23) at the end of the booklet. - 11. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator on duty in the Room/Hall. However, the candidates are allowed to take away this Test Booklet with them. - 12. The CODE for this Booklet is E. Make sure that the CODE printed on Side-2 of the Answer Sheet is the same as that on this booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet. | Name of the Can | ndidate (in Capita | al letters):. | | | | | |---|--------------------|-------------------|-----------|------------------------------|---|----| | Roll Number | : in figures | | | | | | | | : in words | | | | | | | Examination Centre Number : | | | | 10 | 6 | | | Name of Examin | ation Centre (in | Capital letters): | | | | | | Candidate's Signature : | | | _ 1. Invi | 1. Invigilator's Signature : | | 14 | | A. S. P. C. | | | 2.1 | -:I-+/- C: | | | #### PART A - PHYSICS - The current voltage relation of diode is given by I=(e^{1000V/T}-1) mA, where the applied voltage V is in volts and the temperature T is in degree Kelvin. If a student makes an error measuring ±0.01 V while measuring the current of 5 mA at 300 K, what will be the error in the value of current in mA? - (4) 0.2 mA - (2) 0.02 mA - (3) 0.5 mA - (4) 0.05 mA - From a tower of height H, a particle is thrown vertically upwards with a speed u. The time taken by the particle, to hit the ground, is n times that taken by it to reach the highest point of its path. The relation between H, u and n is: - (1) $2 g H = n^2 u^2$ - (2) $g H = (n-2)^2 u^2$ - (3) $2 g H = nu^2(n-2)$ - (4) $g H = (n-2)u^2$ 3. A mass 'm' is supported by a massless string wound around a uniform hollow cylinder of mass m and radius R. If the string does not slip on the cylinder, with what acceleration will the mass fall on release? - (1) $\frac{2g}{3}$ - (2) $\frac{g}{2}$ - $(3) \frac{58}{6}$ - (4) g - 4. A block of mass m is placed on a surface with a vertical cross section given by y = x³/6. If the coefficient of friction is 0.5, the maximum height above the ground at which the block can be placed without slipping is: - (1) $\frac{1}{6}$ m - (2) $\frac{2}{3}$ m - (3) $\frac{1}{3}$ m - (4) $\frac{1}{2}$ m 5. When a rubber-band is stretched by a distance x, it exerts a restoring force of magnitude $F = ax + bx^2$ where a and b are constants. The work done in stretching the unstretched rubber-band by L is: (1) $$aL^2 + bL^3$$ (2) $$\frac{1}{2}(aL^2+bL^3)$$ (3) $$\frac{aL^2}{2} + \frac{bL^3}{3}$$ (4) $$\frac{1}{2} \left(\frac{aL^2}{2} + \frac{bL^3}{3} \right)$$ - 6. A bob of mass m attached to an inextensible string of length l is suspended from a vertical support. The bob rotates in a horizontal circle with an angular speed ω rad/s about the vertical. About the point of suspension: - (1) angular momentum is conserved. - (2) angular momentum changes in magnitude but not in direction. - (3) angular momentum changes in direction but not in magnitude. - angular momentum changes both in direction and magnitude. 7. Four particles, each of mass M and equidistant from each other, move along a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle is: (1) $$\sqrt{\frac{GM}{R}}$$ (2) $$\sqrt{2\sqrt{2}} \frac{GM}{R}$$ (3) $$\sqrt{\frac{GM}{R}} \left(1 + 2\sqrt{2}\right)$$ $$\frac{1}{2}\sqrt{\frac{GM}{R}}\left(1+2\sqrt{2}\right)$$ 8. The pressure that has to be applied to the ends of a steel wire of length 10 cm to keep its length constant when its temperature is raised by 100°C is: (For steel Young's modulus is 2×10^{11} N m⁻² and coefficient of thermal expansion is 1.1×10^{-5} K⁻¹) (1) $$2.2 \times 10^8$$ Pa (4) $$2.2 \times 10^6$$ Pa 9. There is a circular tube in a vertical plane. Two liquids which do not mix and of densities d₁ and d₂ are filled in the tube. Each liquid subtends 90° angle at centre. Radius joining their interface makes an angle α with vertical. Ratio d₁/d₂ is: $(1) \quad \frac{1 + \sin\alpha}{1 - \sin\alpha}$ - $(3) \quad \frac{1 + \tan\alpha}{1 \tan\alpha}$ - $(4) \quad \frac{1 + \sin\alpha}{1 \cos\alpha}$ 10. On heating water, bubbles being formed at the bottom of the vessel detatch and rise. Take the bubbles to be spheres of radius R and making a circular contact of radius r with the bottom of the vessel. If r << R, and the surface tension of water is T, value of r just before bubbles detatch is:</p> (density of water is ρ_w) - (1) $R^2 \sqrt{\frac{\rho_w g}{3 T}}$ - (2) $R^2 \sqrt{\frac{\rho_w g}{6 T}}$ - (3) $R^2 \sqrt{\frac{\rho_w g}{T}}$ - $(4) R^2 \sqrt{\frac{3\rho_w}{T}} g$ 11. Three rods of Copper, Brass and Steel are welded together to form a Y - shaped structure. Area of cross - section of each rod = 4 cm². End of copper rod is maintained at 100°C where as ends of brass and steel are kept at 0°C. Lengths of the copper, brass and steel rods are 46, 13 and 12 cms respectively. The rods are thermally insulated from surroundings except at ends. Thermal conductivities of copper, brass and steel are 0.92, 0.26 and 0.12 CGS units respectively. Rate of heat flow through copper rod is: (1) 1.2 cal/s - (2) 2.4 cal/s - (3) 4.8 cal/s - (4) 6.0 cal/s 12. One mole of diatomic ideal gas undergoes a cyclic process ABC as shown in figure. The process BC is adiabatic. The temperatures at A, B and C are 400 K, 800 K and 600 K respectively. Choose the correct statement: - The change in internal energy in whole cyclic process is 250 R. - (2) The change in internal energy in the process CA is 700 R. - (3) The change in internal energy in the process AB is −350 R. - (4) The change in internal energy in the process BC is −500 R. - 13. An open glass tube is immersed in mercury in such a way that a length of 8 cm extends above the mercury level. The open end of the tube is then closed and sealed and the tube is raised vertically up by additional 46 cm. What will be length of the air column above mercury in the tube now? (Atmospheric pressure = 76 cm of Hg) - (1) 16 cm - (2) 22 cm - (3) 38 cm - (4) 6 cm - 14. A particle moves with simple harmonic motion in a straight line. In first τ s, after starting from rest it travels a distance a, and in next τ s it travels 2a, in same direction, then: - (1) amplitude of motion is 3a - (2) time period of oscillations is 87 - (3) amplitude of motion is 4a - (4) time period of oscillations is 6τ - 15. A pipe of length 85 cm is closed from one end. Find the number of possible natural oscillations of air column in the pipe whose frequencies lie below 1250 Hz. The velocity of sound in air is 340 m/s. - (1) 12 - (2) 8 - (3) 6 - (4) 4 - 16. Assume that an electric field $\vec{E} = 30x^2 \hat{i}$ exists in space. Then the potential difference $V_A V_O$, where V_O is the potential at the origin and V_A the potential at x=2 m is: - (X) 120 J - (2) -120 J - (3) -80 J - (4) 80 J - 17. A parallel plate capacitor is made of two circular plates separated by a distance of 5 mm and with a dielectric of dielectric constant 2.2 between them. When the electric field in the dielectric is 3 × 10⁴ V/m, the charge density of the positive plate will be close to: - (1) $6 \times 10^{-7} \text{ C/m}^2$ - (2) $3 \times 10^{-7} \text{ C/m}^2$ - (3) 3×10⁴ C/m² - (4) 6×104 C/m² - 18. In a large building, there are 15 bulbs of 40 W, 5 bulbs of 100 W, 5 fans of 80 W and 1 heater of 1 kW. The voltage of the electric mains is 220 V. The minimum capacity of the main fuse of the building will be: - (1) 8 A - (2) 10 A - (3) 12 A - (4) 14 A 19. A conductor lies along the z-axis at $-1.5 \le z < 1.5$ m and carries a fixed current of 10.0 A in $-\stackrel{\wedge}{a_z}$ direction (see figure). For a field $\stackrel{\wedge}{B} = 3.0 \times 10^{-4} \ e^{-0.2x} \stackrel{\wedge}{a_y}$ T, find the power required to move the conductor at constant speed to x = 2.0 m, y = 0 m in 5×10^{-3} s. Assume parallel motion along the x-axis. - (1) 1.57 W - (2) 2.97 W - (3) 14.85 W - (4) 29.7 W - 20. The coercivity of a small magnet where the ferromagnet gets demagnetized is 3×10³ A m⁻¹. The current required to be passed in a solenoid of length 10 cm and number of turns 100, so that the magnet gets demagnetized when inside the solenoid, is: - (1) 30 mA - (2) 60 mA - (3) 3 A - (4) 6 A 21. In the circuit shown here, the point 'C' is kept connected to point 'A' till the current flowing through the circuit becomes constant. Afterward, suddenly, point 'C' is disconnected from point 'A' and connected to point 'B' at time t=0. Ratio of the voltage across resistance and the inductor at t=L/R will be equal to: - $(2) \frac{e}{1-e}$ - (2) 1 - (3) -1 - $\frac{1-e}{e}$ - 22. During the propagation of electromagnetic waves in a medium : - Electric energy density is double of the magnetic energy density. - Electric energy density is half of the magnetic energy density. - Electric energy density is equal to the magnetic energy density. - Both electric and magnetic energy densities are zero. A thin convex lens made from crown glass $\left[\mu = \frac{3}{2}\right]$ has focal length f. When it is measured in two different liquids having refractive indices $\frac{4}{3}$ and $\frac{5}{3}$, it has the focal lengths f_1 and f_2 respectively. The correct relation between the focal lengths is: (1) $f_1 = f_2 < f$ 23. - (2) $f_1 > f$ and f_2 becomes negative - (2) $f_2 > f$ and f_1 becomes negative - (4) f_1 and f_2 both become negative - A green light is incident from the water to 24. the air - water interface at the critical angle(θ). Select the **correct** statement. - The entire spectrum of visible light (1)will come out of the water at an angle of 90° to the normal. - The spectrum of visible light whose frequency is less than that of green light will come out to the air medium. - The spectrum of visible light whose (3)frequency is more than that of green light will come out to the air medium. - The entire spectrum of visible light (4)will come out of the water at various angles to the normal. - 25. Two beams, A and B, of plane polarized light with mutually perpendicular planes of polarization are seen through a polaroid. From the position when the beam A has maximum intensity (and beam B has zero intensity), a rotation of polaroid through 30° makes the two beams appear equally bright. If the initial intensities of the two beams are IA and IB respectively, then $\frac{I_A}{I_B}$ equals : - (1)3 - (2) - (3) - 26. The radiation corresponding to $3\rightarrow 2$ transition of hydrogen atom falls on a metal surface to produce photoelectrons. These electrons are made to enter a magnetic field of 3×10^{-4} T. If the radius of the largest circular path followed by these electrons is 10.0 mm, the work function of the metal is close to: - 1.8 eV (1) - 1.1 eV - 0.8 eV - 1.6 eV (4) 27. Hydrogen ($_1H^1$), Deuterium ($_1H^2$), singly ionised Helium ($_2He^4$) + and doubly ionised lithium ($_3Li^6$) + all have one electron around the nucleus. Consider an electron transition from n=2 to n=1. If the wave lengths of emitted radiation are λ_1 , λ_2 , λ_3 and λ_4 respectively then approximately which one of the following is **correct**? $$(1) \quad 4\lambda_1 = 2\lambda_2 = 2\lambda_3 = \lambda_4$$ $$(2) \quad \lambda_1 = 2\lambda_2 = 2\lambda_3 = \lambda_4$$ $$\lambda_1 = \lambda_2 = 4\lambda_3 = 9\lambda_4$$ $$(4) \quad \lambda_1 = 2\lambda_2 = 3\lambda_3 = 4\lambda_4$$ 28. The forward biased diode connection is: $$(2) \qquad \begin{array}{c} -3 \text{ V} \\ \end{array}$$ 29. Match List - I (Electromagnetic wave type) with List - II (Its association/application) and select the correct option from the choices given below the lists: | | List - I | List - II | | | |-----|---------------------|-----------|---|--| | (a) | Infrared
waves | (i) | To treat muscular strain | | | (b) | Radio waves | (ii) | For broadcasting | | | (c) | X - rays | (iii) | To detect fracture of bones | | | (d) | Ultraviolet
rays | (iv) | Absorbed by the ozone layer of the atmosphere | | - (a) (b) (c) (d) - (1) (iv) (iii) (ii) (i) - (2) (i) (ii) (iv) (iii) - (3) (iii) (ii) (iv) - (4) (i) (ii) (iii) (iv) - 30. A student measured the length of a rod and wrote it as 3.50 cm. Which instrument did he use to measure it? - (1) A meter scale. - (2) A vernier calliper where the 10 divisions in vernier scale matches with 9 division in main scale and main scale has 10 divisions in 1 cm. - (3) A screw gauge having 100 divisions in the circular scale and pitch as 1 mm. - (4) A screw gauge having 50 divisions in the circular scale and pitch as 1 mm. ## PART B - CHEMISTRY - 31. The correct set of four quantum numbers for the valence electrons of rubidium atom (Z = 37) is: - (1) 5, 0, 0, $+\frac{1}{2}$ - (2) 5, 1, 0, $+\frac{1}{2}$ - (3) 5, 1, 1, $+\frac{1}{2}$ - (4) 5, 0, 1, $+\frac{1}{2}$ - 32. If Z is a compressibility factor, van der Waals equation at low pressure can be written as: - $(1) Z = 1 + \frac{RT}{Pb}$ - (2) $Z=1-\frac{a}{VRT}$ - $(3) \quad Z = 1 \frac{Pb}{RT}$ - $(4) Z=1+\frac{Pb}{RT}$ - 33. CsCl crystallises in body centred cubic lattice. If 'a' is its edge length then which of the following expressions is correct? - (1) $r_{Cs^+} + r_{Cl^-} = 3a$ - (2) $r_{Cs^+} + r_{Cl^-} = \frac{3a}{2}$ - (3) $r_{Cs^+} + r_{Cl^-} = \frac{\sqrt{3}}{2}a$ - (4) $r_{Cs^+} + r_{Cl^-} = \sqrt{3}a$ - 34. For the estimation of nitrogen, 1.4 g of an organic compound was digested by Kjeldahl method and the evolved ammonia was absorbed in 60 mL of $\frac{M}{10}$ sulphuric acid. The unreacted acid required 20 mL of $\frac{M}{10}$ sodium hydroxide for complete neutralization. The percentage of nitrogen in the compound is : - (1) 6% - (2) 10% - (3) 3% - (4) 5% - 35. Resistance of 0.2 M solution of an electrolyte is 50 Ω . The specific conductance of the solution is 1.4 S m⁻¹. The resistance of 0.5 M solution of the same electrolyte is 280 Ω . The molar conductivity of 0.5 M solution of the electrolyte in S m² mol⁻¹ is: - (1) 5×10^{-4} - (2) 5×10^{-3} - (3) 5×10^3 - (4) 5×10^2 - 36. For complete combustion of ethanol, C₂H₅OH(l) +3O₂(g) → 2CO₂(g) +3H₂O(l), the amount of heat produced as measured in bomb calorimeter, is 1364.47 kJ mol⁻¹ at 25°C. Assuming ideality the Enthalpy of combustion, Δ_cH, for the reaction will be: $(R = 8.314 \text{ kJ mol}^{-1})$ - (1) $-1366.95 \text{ kJ mol}^{-1}$ - (2) -1361.95 kJ mol⁻¹ - (3) -1460.50 kJ mol⁻¹ - (4) -1350.50 kJ mol⁻¹ 37. The equivalent conductance of NaCl at concentration C and at infinite dilution are λ_C and λ_∞ , respectively. The correct relationship between λ_C and λ_∞ is given as: (where the constant B is positive) - (1) $\lambda_C = \lambda_\infty + (B)C$ - (2) $\lambda_C = \lambda_\infty (B)C$ - (3) $\lambda_C = \lambda_\infty (B) \sqrt{C}$ - $(4) \quad \lambda_C = \lambda_\infty + (B) \sqrt{C}$ - 38. Consider separate solutions of 0.500 M C₂H₅OH(aq), 0.100 M Mg₃(PO₄)₂(aq), 0.250 M KBr(aq) and 0.125 M Na₃PO₄(aq) at 25°C. Which statement is true about these solutions, assuming all salts to be strong electrolytes? - They all have the same osmotic pressure. - (2) 0.100 M Mg₃(PO₄)₂(aq) has the highest osmotic pressure. - (3) 0.125 M Na₃PO₄(aq) has the highest osmotic pressure. - (4) 0.500 M C₂H₅OH(aq) has the highest osmotic pressure. - 39. For the reaction $SO_{2(g)} + \frac{1}{2}O_{2(g)} \rightleftharpoons SO_{3(g)}$, if $K_P = K_C(RT)^x$ where the symbols have usual meaning then the value of x is : (assuming ideality) - (1) -1 - $(2)' \frac{1}{2}$ - (3) $\frac{1}{2}$ - (4) 1 40. For the non - stoichiometre reaction 2A+B→C+D, the following kinetic data were obtained in three separate experiments, all at 298 K. | Initial | Initial | Initial rate of | | |---------------|---------------|----------------------|--| | Concentration | Concentration | formation of C | | | (A) | (B) | (mol L-S-) | | | 0.1 M | 0.1 M | 1.2×10^{-3} | | | 0.1 M | 0.2 M | 1.2×10^{-3} | | | 0.2 M | 0.1 M | 2.4×10^{-3} | | The rate law for the formation of C is: - (1) $\frac{dc}{dt} = k[A] [B]$ - (2) $\frac{dc}{dt} = k[A]^2 [B]$ - (3) $\frac{dc}{dt} = k[A] [B]^2$ - $(4) \frac{dc}{dt} = k[A]$ - **41.** Among the following oxoacids, the correct decreasing order of acid strength is: - (1) HOCl > HClO₂ > HClO₃ > HClO₄ - (2) HClO₄ > HOCl > HClO₂ > HClO₃ - (3) HClO₄ > HClO₃ > HClO₂ > HOCl - (4) HClO₂ > HClO₄ > HClO₃ > HOCl - **42.** The metal that cannot be obtained by electrolysis of an aqueous solution of its salts is: - (1) Ag - (2) Ca - (3) Cu - (4) Cr - 43. The octahedral complex of a metal ion M³⁺ with four monodentate ligands L₁, L₂, L₃ and L₄ absorb wavelengths in the region of red, green, yellow and blue, respectively. The increasing order of ligand strength of the four ligands is: - (1) L4 < L3 < L2 < L1 - (2) L1 < L3 < L2 < L4 - (3) $L_3 < L_2 < L_4 < L_1$ - (4) L₁ < L₂ < L₄ < L₃ - 44. Which one of the following properties is not shown by NO? It is diamagnetic in gaseous state - (2) It is a neutral oxide - (3) It combines with oxygen to form nitrogen dioxide - (4) It's bond order is 2.5 - 45. In which of the following reactions H₂O₂ acts as a reducing agent? (a) $$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$$ (b) $$H_2O_2 - 2e^- \rightarrow O_2 + 2H^+$$ (c) $$H_2O_2 + 2e^- \rightarrow 2OH^-$$ (d) $$H_2O_2 + 2OH^- - 2e^- \rightarrow O_2 + 2H_2O$$ - (1) (a), (b) - (2) (c), (d) - (3) (a), (c) - (4) (b), (d) - 46. The correct statement for the molecule, Csl₃, is: - (1) it is a covalent molecule. - (2) it contains Cs+ and I3 ions. - (3) it contains Cs3+ and I- ions. - (4) it contains Cs⁺, I⁻ and lattice I₂ molecule. - 47. The ratio of masses of oxygen and nitrogen in a particular gaseous mixture is 1:4. The ratio of number of their molecule is: - (1) 1:4 - (2) 7:32 - (3) 1:8 - (4) 3:16 - 48. Given below are the half cell reactions: $$Mn^{2+} + 2e^{-} \rightarrow Mn$$; $E^{o} = -1.18 \text{ V}$ $$2(Mn^{3+} + e^{-} \rightarrow Mn^{2+})$$; $E^{0} = +1.51 \text{ V}$ The Eo for $3Mn^{2+} \rightarrow Mn + 2Mn^{3+}$ will be: - (1) −2.69 V; the reaction will not occur - (2) −2.69 V ; the reaction will occur - (3) -0.33 V; the reaction will not occur - (4) −0.33 V; the reaction will occur 49. Which series of reactions correctly represents chemical relations related to iron and its compound? (1) $$Fe \xrightarrow{\text{dil } H_2SO_4} FeSO_4 \xrightarrow{H_2SO_4, O_2} Fe_2(SO_4)_3 \xrightarrow{\text{heat}} Fe$$ - (2) Fe $\xrightarrow{O_2$, heat \rightarrow FeO $\xrightarrow{\text{dil H}_2SO_4}$ \rightarrow FeSO₄ $\xrightarrow{\text{heat}}$ Fe - (3) Fe $\xrightarrow{Cl_2, \text{ heat}}$ FeCl₃ $\xrightarrow{\text{heat, air}}$ FeCl₂ \xrightarrow{Zn} Fe - (4) Fe $\xrightarrow{O_2$, heat \longrightarrow Fe₃O₄ $\xrightarrow{CO, 600^{\circ}C}$ \longrightarrow FeO $\xrightarrow{CO, 700^{\circ}C}$ \longrightarrow Fe - 50. The equation which is balanced and represents the correct product(s) is: (1) $$\text{Li}_2\text{O} + 2\text{KCl} \rightarrow 2\text{LiCl} + \text{K}_2\text{O}$$ - (2) $[CoCl(NH_3)_5]^+ + 5H^+ \rightarrow Co^2 + +5NH_4^+ + Cl^-$ - (3) $[Mg(H_2O)_6]^{2+} + (EDTA)^{4-}$ $\xrightarrow{\text{excess NaOH}} [Mg(EDTA)]^{2+}$ $+ 6H_2O$ - (4) $CuSO_4 + 4KCN \rightarrow K_2[Cu(CN)_4] + K_2SO_4$ - 51. In S_N2 reactions, the correct order of reactivity for the following compounds: CH₃Cl, CH₃CH₂Cl, (CH₃)₂CHCl and (CH₃)₃CCl is: - (1) $CH_3CI > (CH_3)_2CHCI > CH_3CH_2CI$ > $(CH_3)_3CCI$ - (2) $CH_3CI > CH_3CH_2CI > (CH_3)_2CHCI > (CH_3)_3CCI$ - (3) $CH_3CH_2CI > CH_3CI > (CH_3)_2CHCI > (CH_3)_3CCI$ - (4) (CH₃)₂CHCl > CH₃CH₂Cl > CH₃Cl > (CH₃)₃CCl - 52. On heating an aliphatic primary amine with chloroform and ethanolic potassium hydroxide, the organic compound formed is: - (1) an alkanol - (2) an alkanediol - (3) an alkyl cyanide - (4) an alkyl isocyanide 53. The most suitable reagent for the conversion of R-CH₂-OH→ R-CHO is: PCC (Pyridinium Chlorochromate) - 54. The major organic compound formed by the reaction of 1, 1, 1 - trichloroethane with silver powder is: - (1) Acetylene - (2) Ethene - (3) 2 Butyne - (4) 2 Butene Sodium phenoxide when heated with CO₂ under pressure at 125°C yields a product which on acetylation produces C. $$\bigcirc ONa + CO_2 \xrightarrow{125^{\circ}} B \xrightarrow{H^+} C$$ The major product C would be: - Considering the basic strength of amines in aqueous solution, which one has the smallest pK_b value? - (1) (CH₃)₂NH - (2) CH₃NH₂ - (3) (CH₃)₃N - (4) C₆H₅NH₂ - 57. For which of the following molecule significant $\mu\neq 0$? - (1) Only (a) - (2) (a) and (b) - (3) Only (c) - (4) (c) and (d) - 58. Which one is classified as a condensation polymer? - (1) Dacron - (2) Neoprene - (3) Teflon - (4) Acrylonitrile - 59. Which one of the following bases is not present in DNA? - (1) Quinoline - (2) Adenine - (3) Cytosine - (4) Thymine - 60. In the reaction, $CH_3COOH \xrightarrow{LiAlH_4} A \xrightarrow{PCl_5} B \xrightarrow{Alc. KOH} C$ the product C is: - (1) Acetaldehyde - (2) Acetylene - (2) Ethylene - (4) Acetyl chloride ## PART C - MATHEMATICS - 61. If $X = \{4^n 3n 1 : n \in N\}$ and $Y = \{9(n-1) : n \in N\}$, where N is the set of natural numbers, then $X \cup Y$ is equal to : - (1) X - (2) Y - (3) N - (4) Y-X - 62. If z is a complex number such that $|z| \ge 2$, then the minimum value of $\left|z + \frac{1}{2}\right|$: - (1) is strictly greater than $\frac{5}{2}$ - (2) is strictly greater than $\frac{3}{2}$ but less than $\frac{5}{2}$ - (3) is equal to $\frac{5}{2}$ - (4) lies in the interval (1, 2) - 63. If a $\in \mathbb{R}$ and the equation $$-3(x-[x])^2+2(x-[x])+a^2=0$$ (where [x] denotes the greatest integer $\leq x$) has no integral solution, then all possible values of a lie in the interval: - (1) (-2, -1) - $(2) \quad (-\infty, -2) \cup (2, \infty)$ - (3) $(-1,0) \cup (0,1)$ - (4) (1, 2) - 64. Let α and β be the roots of equation $px^2 + qx + r = 0$, $p \neq 0$. If p, q, r are in A.P. and $\frac{1}{\alpha} + \frac{1}{\beta} = 4$, then the value of $|\alpha \beta|$ - (1) $\frac{\sqrt{34}}{9}$ is: - (2) $\frac{2\sqrt{13}}{9}$ - (3) $\frac{\sqrt{61}}{9}$ - (4) $\frac{2\sqrt{17}}{9}$ - 65. If α , $\beta \neq 0$, and $f(n) = \alpha^n + \beta^n$ and $$\begin{vmatrix} 3 & 1 + f(1) & 1 + f(2) \\ 1 + f(1) & 1 + f(2) & 1 + f(3) \\ 1 + f(2) & 1 + f(3) & 1 + f(4) \end{vmatrix}$$ = K(1-\alpha)^2 (1-\beta)^2 (\alpha - \beta)^2, then K is equal to: - (1) 1 - (2) -1 - (3) αβ - (4) $\frac{1}{\alpha\beta}$ - 66. If A is an 3×3 non singular matrix such that AA' = A'A and $B = A^{-1}A'$, then BB' equals: - (1) B^{-1} - (2) $(B^{-1})'$ - (3) I+B - (4) I - 67. If the coefficients of x^3 and x^4 in the expansion of $(1 + ax + bx^2) (1 2x)^{18}$ in powers of x are both zero, then (a, b) is equal to: - (1) $\left(14, \frac{272}{3}\right)$ - (2) $\left(16, \frac{272}{3}\right)$ - (3) $\left(16, \frac{251}{3}\right)$ - (4) $\left(14, \frac{251}{3}\right)$ - |68. If $(10)^9 + 2(11)^1 (10)^8 + 3(11)^2 (10)^7 + ...$ + 10 $(11)^9 = k (10)^9$, then k is equal to: - (1) 100 - (2) 110 - (3) $\frac{121}{10}$ - $(4) \frac{441}{100}$ - 69. Three positive numbers form an increasing G.P. If the middle term in this G.P. is doubled, the new numbers are in A.P. Then the common ratio of the G.P. is: - (1) $2-\sqrt{3}$ - (2) $2 + \sqrt{3}$ - (3) $\sqrt{2} + \sqrt{3}$ - (4) $3 + \sqrt{2}$ - 70. $\lim_{x\to 0} \frac{\sin{(\pi\cos^2{x})}}{x^2}$ is equal to : - $(1) \pi$ - (2) π - (3) $\frac{\pi}{2}$ - (4) 1 - 71. If g is the inverse of a function f and $f'(x) = \frac{1}{1+x^5}$, then g'(x) is equal to: - (1) $\frac{1}{1+\{g(x)\}^5}$ - (2) $1 + \{g(x)\}^5$ - (3) $1 + x^5$ - (4) $5x^4$ - 72. If f and g are differentiable functions in [0, 1] satisfying f(0) = 2 = g(1), g(0) = 0 and f(1) = 6, then for some $c \in]0, 1[$: - (1) f'(c) = g'(c) - (2) f'(c) = 2g'(c) - (3) 2f'(c) = g'(c) - (4) 2f'(c) = 3g'(c) (1) $$\alpha = 2, \beta = -\frac{1}{2}$$ (2) $$\alpha = 2, \beta = \frac{1}{2}$$ (3) $$\alpha = -6, \beta = \frac{1}{2}$$ (4) $$\alpha = -6, \beta = -\frac{1}{2}$$ 74. The integral $\int \left(1 + x - \frac{1}{x}\right) e^{x + \frac{1}{x}} dx$ is equal to: (1) $$(x+1) e^{x+\frac{1}{x}} + c$$ (2) $$-x e^{x+\frac{1}{x}} + c$$ (3) $$(x-1) e^{x+\frac{1}{x}} + c$$ (4) $$x e^{x+\frac{1}{x}} + c$$ 75. The integral $$\int_{0}^{\pi} \sqrt{1 + 4 \sin^{2} \frac{x}{2} - 4 \sin \frac{x}{2}} \, dx \text{ equals}:$$ (1) $$4\sqrt{3} - 4$$ (2) $$4\sqrt{3} - 4 - \frac{\pi}{3}$$ (3) $$\pi - 4$$ (4) $$\frac{2\pi}{3} - 4 - 4\sqrt{3}$$ 76. The area of the region described by: $A = \{(x, y) : x^2 + y^2 \le 1 \text{ and } y^2 \le 1 - x\} \text{ is } :$ (1) $$\frac{\pi}{2} - \frac{2}{3}$$ (2) $$\frac{\pi}{2} + \frac{2}{3}$$ (3) $$\frac{\pi}{2} + \frac{4}{3}$$ (4) $$\frac{\pi}{2} - \frac{4}{3}$$ 77. Let the population of rabbits surviving at a time t be governed by the differential equation $\frac{dp(t)}{dt} = \frac{1}{2}p(t) - 200$. If p(0) = 100, then p(t) equals: (2) $$400-300 e^{-t/2}$$ (4) $$300-200 e^{-t/2}$$ 78. Let PS be the median of the triangle with vertices P(2, 2), Q(6, −1) and R(7, 3). The equation of the line passing through (1, −1) and parallel to PS is: $$(1) \quad 4x + 7y + 3 = 0$$ (2) $$2x - 9y - 11 = 0$$ (3) $$4x - 7y - 11 = 0$$ $$(4) \quad 2x + 9y + 7 = 0$$ - 79. Let a, b, c and d be non-zero numbers. If the point of intersection of the lines 4ax+2ay+c=0 and 5bx+2by+d=0 lies in the fourth quadrant and is equidistant from the two axes then: - (1) 3bc 2ad = 0 - (2) 3bc + 2ad = 0. - (3) 2bc 3ad = 0 - (4) 2bc + 3ad = 0 - 80. The locus of the foot of perpendicular drawn from the centre of the ellipse $x^2+3y^2=6$ on any tangent to it is: - (1) $(x^2 + y^2)^2 = 6x^2 + 2y^2$ - (2) $(x^2 + y^2)^2 = 6x^2 2y^2$ - (3) $(x^2 y^2)^2 = 6x^2 + 2y^2$ - (4) $(x^2 y^2)^2 = 6x^2 2y^2$ - 81. Let C be the circle with centre at (1, 1) and radius = 1. If T is the circle centred at (0, y), passing through origin and touching the circle C externally, then the radius of T is equal to: - (1) $\frac{1}{2}$ - (2) $\frac{1}{4}$ - $(3) \quad \frac{\sqrt{3}}{\sqrt{2}}$ - (4) $\frac{\sqrt{3}}{2}$ - 82. The slope of the line touching both the parabolas $y^2 = 4x$ and $x^2 = -32y$ is: - (1) $\frac{1}{8}$ - (2) $\frac{2}{3}$ - (3) $\frac{1}{2}$ - (4) $\frac{3}{2}$ - 83. The image of the line $$\frac{x-1}{3} = \frac{y-3}{1} = \frac{z-4}{-5}$$ in the plane 2x - y + z + 3 = 0 is the line: (1) $$\frac{x-3}{3} = \frac{y+5}{1} = \frac{z-2}{-5}$$ (2) $$\frac{x-3}{-3} = \frac{y+5}{-1} = \frac{z-2}{5}$$ (3) $$\frac{x+3}{3} = \frac{y-5}{1} = \frac{z-2}{-5}$$ (4) $$\frac{x+3}{-3} = \frac{y-5}{-1} = \frac{z+2}{5}$$ - 84. The angle between the lines whose direction cosines satisfy the equations l+m+n=0 and $l^2=m^2+n^2$ is: - (1) $\frac{\pi}{6}$ - (2) $\frac{\pi}{2}$ - (3) $\frac{\pi}{3}$ - (4) $\frac{\pi}{4}$ - equal to: - (1) - (2)1 - (3) - (4)3 - Let A and B be two events such that $P(\overline{A \cup B}) = \frac{1}{6}, \quad P(A \cap B) = \frac{1}{4}$ $P(\overline{A}) = \frac{1}{4}$, where \overline{A} stands for the complement of the event A. Then the events A and B are: - (1)independent but not equally likely. - (2)independent and equally likely. - mutually exclusive and independent. (3) - (4)equally likely but not independent. - The variance of first 50 even natural 87. numbers is: - (4) 833 - If $\begin{bmatrix} \overrightarrow{a} \times \overrightarrow{b} & \overrightarrow{b} \times \overrightarrow{c} & \overrightarrow{c} \times \overrightarrow{a} \end{bmatrix} = \lambda \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^2$ then λ is $\begin{bmatrix} 88 \end{bmatrix}$. Let $f_k(x) = \frac{1}{k} (\sin^k x + \cos^k x)$ where $x \in \mathbb{R}$ and $k \ge 1$. Then $f_4(x) - f_6(x)$ equals : - 89. A bird is sitting on the top of a vertical pole 20 m high and its elevation from a point O on the ground is 45°. It flies off horizontally straight away from the point O. After one second, the elevation of the bird from O is reduced to 30°. Then the speed (in m/s) of the bird is: - (1) $20\sqrt{2}$ - $20(\sqrt{3}-1)$ (2) - (3) $40(\sqrt{2}-1)$ - (4) $40(\sqrt{3} \sqrt{2})$ - The statement $\sim (p \leftrightarrow \sim q)$ is : - a tautology - a fallacy - (3)equivalent to $p \leftrightarrow q$ - equivalent to $\sim p \leftrightarrow q$