JEE-MAIN Mathematics Model Paper with Solutions

- **1.If** z is a complex number satisfying $z^4 + z^3 + 2z^2 + z + 1 = 0$, then the set of possible values of |z| is
 - (c) $\{1,2,3\}$ (d) $\{1,2,3,4\}$ (a) $\{1,2\}$ (b) $\{1\}$

a, **b**, **y** are the roots of $x^3 - 3x^2 + 3x + 7 = 0$ (w is cube root of unity) then 2. $\left(\frac{\alpha-1}{\beta-1}+\frac{\beta-1}{\gamma-1}+\frac{\gamma-1}{\alpha-1}\right)$ is (a) $\frac{3}{\omega}$ (b) ω^2 (c) $2\omega^2$ (d) 3w

c)4

d)2

d) none

3. Let
$$f:(0,\infty) \to R$$
 and $F(x) = \int_0^x f(t) dt$. If $F(x^2) = x^2(1+x)$, then $f(4)$ equals

a) $\frac{5}{4}$ b)7 **4.If** $x = \sum_{n=0}^{\infty} a^n, y = \sum_{n=0}^{\infty} b^n, z = \sum_{n=0}^{\infty} c^n$ where *a*, *b*, *c* are in AP and |a| < 1, |b| < 1, |c| < 1, then *x*, *y*, *z* are in (a,b,c are distinct) c) HP b) GP a) AP d) AGP

5. If number of terms in the expansion of $(x - 2y + 3z)^n$ are 45, then maximum value of

 ${}^{n}C_{r}$ is

6. $\int e^{x} \left(\tan^{-1} x + \frac{2x}{(1+x^{2})^{2}} \right) dx$ is equal to a) $e^{x}\left(\tan^{-1}x - \frac{1}{1+x^{2}}\right) + C$ b) $e^{x}\left(\tan^{-1}x + \frac{1}{1+x^{2}}\right) + C$ d) $e^{x}\left(\tan^{-1}x + \frac{2}{1+x^{2}}\right) + C$ c) $e^{x}\left(\cot^{-1}x - \frac{1}{1+x^{2}}\right) + C$

a) -5, -8 b) -5, 8 c) 5, -8 d) 8, -5

16.If	$A = \{1, 2, 3, 4, 5\}$, and	l relation R on A is	defined by <i>R</i> =	$\{(x, y) \mid x < y \text{ and }$	$l\left x^2 - y^2\right < 9$
then	R				
a. {(1	1,1),(2,2),(3,3)(4,4),	,(5,5)}	b. {(2,1),(3,2),(3,2)(4,3),(5,4	4)}
c. {(1	(1,2),(1,3),(2,3)(3,4),	$(4,5)$ }	d. $\{(1,2),(1,3)\}$),(2,3)(3,4)}	
17.	$p \wedge (q \wedge r)$ is logic	ally equivalent to			
	a) $p \lor (q \land r)$	b). $(p \land q) \land r$	c). (<i>p</i>	$\wedge q \big) \vee r$	d). $p \rightarrow (q \land r)$
$18.^{n-1}$	$\max_{n \to \infty} \sum_{r=1}^{n} \cot^{-1} \left(r^2 + r + 1 \right) =$	=			
	a) $\frac{\pi}{4}$	b) $\frac{\pi}{2}$	c) <i>π</i>	d) 0	CO'
19.	A function f from	the set of integers	\mathbb{Z} to \mathbb{Z} is define	ed as follows:	•
	$f(n) = \begin{cases} n+3 & \text{if } n \\ \frac{n}{2} & \text{if } n \end{cases}$	n is odd is even		3 ¹⁰	
	Suppose k is odd	and $f(f(f(k))) = 2$	27 . Then the su	m of the digits	of k is
	a) 3	b) 6	c) 9	d) 12	
20. If	f y = x + 2 is a norm	al to the parabola	$y^2 = 4ax$, then a	=	
	a) $\frac{1}{3}$	b) $-\frac{1}{2}$	c) $-\frac{1}{3}$	d) 2	
21.T	he curve xy = c (c >	> 0) and the circle	$x^{2} + y^{2} = 1$ touch	at two points, t	then distance between
	the points of cont	acts is			
	a) 1	b) 2	c) $2\sqrt{2}$	d) $\sqrt{2}$	
22.	Statement I: Asy	mptotes of a hyper	bola, $3x + 4y =$	= 2 and 4x - 3	y = 5 are bisectors of
	transverse and cor	jugate axes of hyper	bola.		
	Statement II: Tra	nsverse and conjuga	te axes of hyper	bola are bisector	rs of asymptotes.
	a) Both statements	s are true and stateme	ent II is the corre	ect explanation of	of statement I.
	b) Both statements	s are true but stateme	ent II is not corre	ect explanation of	of statement I.
	c) Statement I is tr	rue, statement II is fa	llse		
	d) Statement I is fa	alse, statement II is t	rue		

23. In $\triangle ABC$ orthocentre is (6,10) circumcentre is (2,3) and equation of side \overrightarrow{BC} is 2x+y=17. Then the radius of the circumcircle of $\triangle ABC$ is

- **a.** 4 **b.** 5 **C.** 2 **d.** 3
- 24. A circle of radius 'r' passes through origin O and cuts the co-ordinate axes at A and B. The locus of the foot of the perpendicular from O to AB is
- b) $(x^2 + y^2)^2 \cdot \left(\frac{1}{r^2} + \frac{1}{v^2}\right) = 2r^2$ a) $(x^2 + y^2) = r^2$ C) $(x^2 + y^2)^2 \cdot \left(\frac{1}{x^2} + \frac{1}{y^2}\right) = 4r^2$ d) $\frac{1}{r^2} + \frac{1}{v^2} = \frac{4}{r^2}$ **25.** Let $D_r = \begin{vmatrix} a & 2^r & 2^{16} - 1 \\ b & 3(4^r) & 2(4^{16} - 1) \\ c & 7(8^r) & 4(8^{16} - 1) \end{vmatrix}$ then the value of $\sum_{r=1}^{16} D_r$ is C). ab+bc+ca **a**). 0 **b**). a+b+c **d**). abc The area enclosed between the curve the $y = \log_e(x+e)$ and the coordinate axes is 26. d) 2 a) 3 b) 4 c) 1 The population p(t) at a time t of a certain mouse species satisfies the differential 27 equation $\frac{d}{dt}p(t) = 0.5p(t) - 450$. If p(0)=850, then the time at which the population becomes zero is c) $\frac{1}{2} \ln 18$ b) ln 9 d) ln18 a) 2 ln 18 Let $\bar{a} = 2\bar{i} + \bar{j} - 2\bar{k}$, $\bar{b} = \bar{i} + \bar{j}$. If \bar{c} is a vector such that $\bar{a} \cdot \bar{c} = |\bar{c}|$, $|\bar{c} - \bar{a}| = 2\sqrt{2}$ and the angle 28. between $\overline{a} \times \overline{b}$ and \overline{c} is 30° then $|(\overline{a} \times \overline{b}) \times \overline{c}| =$ b) $\frac{3\sqrt{3}}{2}$ a) $\frac{1}{2}$ c) 3 d) $\frac{3}{2}$ $f(x) = \begin{cases} x^2 \left(\frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} \right), & x \neq 0 \\ 0, & x = 0 \end{cases}$. Then 29. a) f(x) is discontinuous at x = 0b) f(x) is continuous but non-differentiable at x = 0c) f(x) is differntiable at x = 0d) f'(0) = 2

30. N is the set of all natural numbers and R is a relation on N×N defined by (a,b)R(c,d) if and only if a+d = b+c. Then R is
a). only reflexive b). Only symmetric c). Only transitive d). Equivalence relation

Solutions

1.Sol. b The given equation is $(z^2 + z + 1)(z^2 + 1) = 0$. , ducation. $z = \pm i, w, w^2$, w being an imaginary cube root of unity. Thus |z| = 1. 2.Sol: a We have $x^3 - 3x^2 + 3x + 7 = 0$ $\Rightarrow (x-1)^3 + 8 = 0$ $\Rightarrow \left(\frac{(x-1)}{-2}\right)^3 = 1$ $\Rightarrow \left(\frac{x-1}{-2}\right)=1, \omega, \omega^2$ $\Rightarrow \quad x = -1; \ 1 - 2\omega; \ 1 - 2\omega^{2}$ $\therefore \quad \alpha = -1, \ \beta = 1 - 2\omega; \ \gamma = 1 - 2\omega^{2}$ \therefore required expression = $3\omega^2$. 3.Sol: ans-c $F(x^3) = x^3(1+x)$ Since, :. $\int (t) dt = x^2 (1+x)$. Differentiating both sides, we get *.*.. $2xf(x^{2})=2x+3x^{2}$ $f(x^2) = 1 + \frac{3x}{2}$:. $f(2^{2})=1+\frac{3}{2}(2)=4 \Rightarrow f(4)=4$ 4.Sol;ans(c) Here, $x = \frac{1}{1-a}, y = \frac{1}{1-b}, z = \frac{1}{1-c} \Rightarrow 1-a = \frac{1}{r}, 1-b = \frac{1}{v}, 1-c = \frac{1}{z}$...

$$\Rightarrow a = 1 - \frac{1}{x}, b = 1 - \frac{1}{y}, c = 1 - \frac{1}{z}$$

$$\therefore \qquad \text{Since, } a, b, c \text{ are in AP.}$$

$$\Rightarrow 1 - \frac{1}{x}, 1 - \frac{1}{y}, 1 - \frac{1}{z} \text{ are in AP.}$$

$$\therefore \qquad x, y, z \text{ are in HP.}$$

5.Sol; ans.(a)

:..

 $^{n+3-1}C_{3-1} = ^{n+2}C_2 = 45$ (n+2)(n+1) = 90 \Rightarrow $n^2 + 3n - 88 = 0$ \Rightarrow n = -11,8 \Rightarrow $max.^{n}C_{r} = max.^{8}C_{r} = 70$ *:*.

6.Sol:.ans-a

.:.

$$\int e^{x} \left[\tan^{-1} x + \frac{1}{1+x^{2}} + \frac{-1}{1+x^{2}} + \frac{2x}{(1+x^{2})^{2}} \right] dx$$
$$= e^{x} \left[\tan^{-1} x - \frac{1}{1+x^{2}} \right] + C$$

7.sol; ans-d

ailon.

$$= 8! + 4(8! - 7!) = 36(7!)$$

8.Sol:.ans-b

$$E_{5}(100!) = 20 + 4 = 24 \quad E_{7}(100!) = 14 + 2 = 16$$

$$E_{5}(50!) = 10 + 2 = 12 \qquad \qquad E_{7}(50!) = 7 + 1 = 8$$

$$E_{5}(N) = 24 - 2(12) = 0 \qquad \qquad E_{5}(N) = 16 - 2(8) = 0$$

$$x = y$$

9.Sol: ans d 10 mangoes can be distributed among 5 persons in ${}^{10+5-1}C_{5-1} = {}^{14}C_4$ ways.

:. Total number of elementary events $=^{14}C_4$

Required probability =1-probability that each person receives at least one mangoe

$$=1-\frac{{}^{10-1}C_{5-1}}{{}^{14}C_4}=1-\frac{{}^9C_4}{{}^{14}C_4}=1-\frac{18}{143}=\frac{125}{143}$$

10. sol: ans-d $A + B = 45^{\circ}$

$$\Rightarrow (1 + \tan A)(1 + \tan B) = 2$$

11.sol: ans-d

 $\therefore \quad \text{Let } ab + bc + ca = x$ $\Rightarrow 2b^2 + 2(c-2)b - 4c + c^2 + x = 0$ $\therefore \quad \text{Since } b \in R,$ $\therefore c^2 - 4c + 2x - 4 \le 0$ $\therefore \quad \text{Since } c \in R$ $\therefore x \le 4$

12.Sol:ans a

 $\therefore \qquad \text{Integrating factor } (I.F.) = e^{\int \frac{k}{m} dt} = e^{\frac{K}{m}t}$ $\therefore \qquad \therefore Ve^{\frac{K}{m}t} = -\int g e^{K.t/m} + c$ $\therefore \qquad Ve^{\frac{K}{m}t} = \frac{-gm}{K} e^{\frac{K}{m}t} + c$ $\therefore \qquad V = C.e^{\frac{-K}{m}t} - \frac{mg}{K}$ 13.Sol: ans-d $\frac{1}{t} + \frac{1}{t} + \dots + \frac{1}{t} = 4 \left[\frac{1}{34} + \frac{1}{45} + \dots + \frac{1}{2005 \times 20} \right]$

$$= 4 \left[\frac{1}{3} - \frac{1}{4} + \frac{1}{4} - \frac{1}{5} + \dots + \frac{1}{2005} - \frac{1}{2006} \right] = 4 \left[\frac{1}{3} - \frac{1}{2006} \right] = \frac{4 \times 2003}{3 \times 2006} = \frac{4006}{3009}$$

14.Sol: ans-a

A point on the first line be A $(-4+3\lambda, -6+5\lambda, 1-2\lambda)$

:. If the lines are coplanar A lies on 3x-2y+z+5=0 and 2x+3y+4z-k=0

on.c

$$\therefore 3(4+3\lambda)-2(-6+5\lambda)+(1-2\lambda)+5=0 \Rightarrow -3\lambda+6=0 \Rightarrow \lambda=2$$

$$\therefore 2(-4+3\lambda)+3(-6+5\lambda)+4(1-2\lambda)-k=0$$

 $\Rightarrow 13\lambda - 22 = K \Rightarrow K = 26 - 22 = 4$

15.sol: ans-b

 \therefore Rolle's theorem holds in [1, 2] for f(x) at

:
$$x = \frac{4}{3} f(1) = f(2) \& f'\left(\frac{4}{3}\right) = 0 \Rightarrow 3b + c = -7$$
 and

$$\therefore \qquad 8b + 3c = -16 \Rightarrow b = -5, c = 8$$

16.Sol: ans- d

...

If
$$A = \{1, 2, 3, 4, 5\}$$

$$R = \left\{ (x, y) / x < y \text{ and } |x^2 - y^2| < 9 \right\} \text{ then } R = \left\{ (1, 2), (1, 3)(2, 3)(3, 4) \right\}$$

satisfies the given condition

17.Sol;ans-b

q	r	$q \wedge r$	р	$p \wedge (q \wedge r)$	$p \wedge q$	$(p \land q) \land r$				
Т	Т	Т	Т	Т	Т	Т				
Т	F	F	F	F	F	F				
F	Т	F	Т	F	F	F				
F	F	F	F	F	F	F				
ans-a										

18.Sol: ans-a

18.Sol: ans-a

$$\sum_{r=1}^{n} Tan^{-1} (r+1) - Tan^{-1}r = Tan^{-1} (n+1) - Tan^{-1}1 \rightarrow \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \text{ as } n \rightarrow \infty$$
.
19.Sol: ans-b.

19.Sol: ans-b.

$$f(f(k)) = f(k+3) = \frac{k+3}{2}$$
 and so, $f(\frac{k+3}{2}) = 27$. If $\frac{k+3}{2}$ is odd, then $\frac{k+3}{2} + 3 = 27$ gives $k = 45$

 $\therefore \qquad \text{Clearly } k = 45 \Rightarrow \frac{k+3}{2} = 24 \text{ is even. So } \frac{k+3}{2} \text{ is even and } f\left(\frac{k+3}{2}\right) = \frac{k+3}{4} = 27 \text{ gives}$

k = 105

20.Sol:ans-c.

 $y = mx - 2am - am^2$

...

...

$$y = x + 2$$

m = 1 and
$$-2am - am^3 = 2 P a = -\frac{1}{3}$$

21.Sol: ans-b The distance between points of a contact = diameter of circle = 2.

22.sol: ans-a Statement 2 is true by theory. Since asymptotes are perpendicular statement 1 is also true. But not correct explanation.

23.Sol: ans=b

Image of orthocenter of **MABC** w.r.t. **BC** lies on the circle. ...

...

24. Sol:ans-c.

 $a^2 + b^2 = 4r^2 \dots (1)$

AB equations $\frac{x}{a} + \frac{y}{b} = 1$

Let P (h, k) be then foot of perpendicular from (0,0) to \overline{AB} ,

$$\frac{h-0}{b} = \frac{k-0}{a} = \frac{ab}{a^2 + b^2} \Longrightarrow h = \frac{ab^2}{a^2 + b^2}, \ k = \frac{a^2b}{a^2 + b^2}$$

Consider $(h^2 + k^2)^2 \cdot (\frac{1}{h^2} + \frac{1}{k^2}) = a^2 + b^2 = 4r^2$, Eliminate a, b gives 100

: locus of P is
$$(x^2 + y^2)^2 \cdot \left(\frac{1}{x^2} + \frac{1}{y^2}\right) = 4r^2$$
.

25.Sol: ans-a

$$a \sum_{r=1}^{16} (2^r) \quad 2^{16} - 1$$

$$a \sum_{r=1}^{16} -1 \quad 2^{16} - 1$$

$$\sum_{r=1}^{16} D_r = |b| \quad 3\sum(3^r) \quad 2(4^{16} - 1) |= 2|b \quad 2(4^{16} - 1) \quad 2(4^{16} - 1) |= 2(0) = 0$$

$$c \quad 4(8^{16} - 1) \quad 4(8^{16} - 1)$$

$$c \quad 4\sum(8^r) \quad 4(8^{16} - 1)$$

26.Sol: ans-c

Area=
$$\int_{1-e}^{0} \log (x+e) dx = x \log x + e - \int \frac{x}{x+e} dx$$
$$= x \log (x+e) - x + e \log (x+e) \Big]_{1-e}^{0}$$
$$= 1$$

27.Sol: ans-a.

Given differential equation is linear in t

$$\therefore I.F = e^{\int -(0.5)dt} e^{-0.5t}$$

$$P(t).e^{-0.5t} = \int (-450) e^{-0.5t} dt$$

$$= 450 \frac{e^{-0.5t}}{-0.5} + C$$

$$= 900 e^{-0.5t} + C$$

$$P(0) = 850 \Rightarrow 850 = 900 + C$$

$$\Rightarrow C = -50$$

$$\therefore P(t) = 900 - 50e^{-0.5t}$$

If $P(t) = 0$ then $50e^{-0.5t} = 900$
 $0.5t = \log_{e}^{18}$
 $t = 2\log_{e}^{18}$

28.Sol; ans-d.

$$\begin{vmatrix} \overline{c} - \overline{a} \end{vmatrix} = 2\sqrt{2} \implies |\overline{c}|^2 + |\overline{a}|^2 - 2\overline{a}.\overline{c} = 8$$
$$\implies |\overline{c}|^2 + 9 - 2|\overline{c}| = 8 \implies (|\overline{c}| - 1)^2 = 0 \quad \therefore |\overline{c}| = 1$$
$$\overline{a}x\overline{b} = 2\overline{i} - 2\overline{j} + \overline{k} \implies |\overline{a}x\overline{b}| = 3$$
$$|(\overline{a}x\overline{b})x\overline{c}| = 3x1x\frac{1}{2} = \frac{3}{2}$$

29.sol: ans-c

29.50, ans-d.

$$\begin{vmatrix} \bar{c} - \bar{a} \end{vmatrix} = 2\sqrt{2} \Rightarrow |\bar{c}|^2 + |\bar{a}|^2 - 2\bar{a}.\bar{c} = 8$$

$$\Rightarrow |\bar{c}|^2 + 9 - 2|\bar{c}| = 8 \Rightarrow (|\bar{c}| - 1)^2 = 0 \quad \therefore |\bar{c}| = 1$$

$$\bar{a}x\bar{b} = 2\bar{i} - 2\bar{j} + \bar{k} \Rightarrow |\bar{a}x\bar{b}| = 3$$

$$|(\bar{a}x\bar{b})x\bar{c}| = 3x_1x\frac{1}{2} = \frac{3}{2}$$
29.sol: ans-c
At x=0,
L.H.L.=
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} f(0-h) = \lim_{h \to 0} h^2 \left(\frac{e^{-bh} - e^{-bh}}{e^{bh} + e^{-bh}}\right) = 0 \left(\frac{1-0}{1+0}\right) = 0$$

$$= R.H.L = \lim_{x \to 0^+} f(x) = \lim_{h \to 0} f(0+h) = \lim_{h \to 0} h^2 \left(\frac{e^{bh} - e^{-bh}}{e^{bh} + e^{-bh}}\right) = 0 \left(\frac{1-0}{1+0}\right) = 0$$
And f(0)=0

$$\Rightarrow L.H.L = R.H.L = f(0) \quad \text{Hence}_{f}(x) \text{ is continuous at } x=0.$$
.30. solans-d

$$(a,b)R(c,d) \Rightarrow a+d = b+c$$
For all $(a,b) \in N \times N(a,b)R(a,b) \qquad \because a + b = b + a$
It is reflexive
If $(a,b)R(c,d) \Rightarrow a+d = b+c$ then $(c,d)R(a,b) \Rightarrow c+b = d+a$
It is symmetric
Also $(a,b)R(c,d) (c,d)R(e,f)$
then $(a,b)R(e,f)$
It is equivalence relation

JEE MAIN Physics Model Paper Key With Solutions

1. A particle moves in the x-y plane with velocity $\vec{v} = a\hat{i} + bt\hat{j}$. At the instant $t = \frac{a\sqrt{3}}{b}$ the magnitude

of tangential, normal and total accelerations are

- a) $\frac{\sqrt{3}}{2}$ b, $\frac{b}{2}$ and b Respectively b) $\frac{b}{2}$, $\frac{b}{2}$ and b Respectively
- c) $\sqrt{2}b, \sqrt{2}b$ and b Respectively d) 2b, 2b and 2b Respectively

2. A solid sphere of uniform density and radius R applies a gravitational force of attraction equal to F_1 on a particle placed at a distance 3R from the center of the sphere. A spherical cavity of radius R/2 is now made in the sphere as shown in the figure. The sphere with cavity now applies a gravitational force F_2 on the same particle. The ratio F_2/F_1 is

- a) $\frac{9}{50}$ b) $\frac{41}{50}$ c) $\frac{3}{25}$
- 3. In the figure shown, match the following :

List-I	List-II	C.O.	• <u></u>
A) $x = 2h$, $y = h$	P) R = $2\sqrt{3}h$	202	
B) $x = h$, $y = 3h$	Q) R = $2\sqrt{2}h$	0.0	y
C) $x = 3h, y = h$	R) $R = 2h$	V	<u>↓ </u>
a) A-Q, B-P, C-P		b) A-Q, B-R, C-P	
c) A-R, B-Q, C-P	NP I	d) A-Q, B-P, C-Q	
Consider a usual s	set-up of Voung's do	uhle slit experiment wi	th slits of equal

4. Consider a usual set-up of Young's double slit experiment with slits of equal intensity as shown in figure. Take O as origin and the Y axis as indicated. If average intensity between $y_1 = -\frac{\lambda D}{4d}$ and $y_2 = +\frac{\lambda D}{4d}$ equal n times the intensity

of maxima, then n equals (take average over phase difference)

a) $\frac{1}{2} \begin{pmatrix} 1+\frac{2}{\pi} \end{pmatrix}$ b) $2 \begin{pmatrix} 1+\frac{2}{\pi} \end{pmatrix}$ c) $\begin{pmatrix} 1+\frac{2}{\pi} \end{pmatrix}$ d) $\frac{1}{2} \begin{pmatrix} 1-\frac{2}{\pi} \end{pmatrix}$

5. In the potentiometer arrangement shown in figure, null point is obtained at length *l*. Match the following. List-I List-II A) If E_1 is increased P) *l* should increase B) If R is increased Q) *l* should decrease

- C) If E_2 is increased R) *l* should remain the same to again get the null point
- a) A-Q, B-R, C-P b) A-Q, B-Q, C-P c) A-R, B-P, C-Q d) A-Q, B-P, C-P

6. Three concentric conducting spherical shells have radii r, 2r and 3r and charges q₁, q₂ and q₃ respectively. Innermost and outermost shells are earthed as shown in figure. select the correct alternative

a)
$$q_1 + q_3 = -q_2$$
 b) $q_1 = -\frac{q_2}{4}$

c)
$$\frac{q_3}{q_1} = 3$$
 d) All are correct

7. In an experiment refractive index of glass was observed to be 1.45, 1.56, 1.54, 1.44, 1.54 and 1.53. The mean absolute error in the experiment is

a) ± 0.04 b) 0.02 c) -0.03 d) ± 0.01

8. A smooth square platform ABCD is moving towards right with a uniform speed v. At what angle
I must a particle be projected from A with speed u so that it strikes the point B

a)
$$\sin^{-1}\left(\frac{u}{v}\right)$$
 *b) cos
c) $\cos^{-1}\left(\frac{u}{v}\right)$ d) $\sin^{-1}\left(\frac{u}{v}\right)$

a) 40 N

 $A \xrightarrow{B} C \xrightarrow{C} V$

9. Two blocks of mass 4 kg and 2 kg are connected by a heavy string and placed on rough horizontal plane. The 2 kg block is pulled with a constant force F. The coefficient of friction between the blocks and the ground is 0.5. What is the value of F so that tension in the string is constant throughout during the motion of the blocks : $(g = 10 \text{ m/s}^2)$

b) 30 N c) 50 N d) 60 N

10. The potential energy of a particle of mass m is given by $U = \frac{1}{2}kx^2$ for x < 0 and U = 0 for

x **2**0. If total mechanical energy of the particle is E. Then its speed at $x = \sqrt{\frac{2E}{k}}$ is

a) Zero b) $\sqrt{\frac{2E}{m}}$ c) $\sqrt{\frac{E}{m}}$ d) $\sqrt{\frac{E}{2m}}$

11. A force F is applied at the top of a ring of mass M and radius R placed on a rough horizontal surface as shown in figure. Friction is sufficient to prevent slipping. The friction force acting on the ring is

a)
$$\frac{F}{2}$$
 Towards right b) $\frac{F}{3}$ towards left c) $\frac{2F}{3}$ towards right d) zero

12. A simple pendulum has time period T_1 . The point of suspension is now moved upward according to the relation $y = Kt^2$, $(K = 1 m/s^2)$ where y is the vertical displacement. The time period now

becomes T₂. The ratio of
$$\frac{T_1^2}{T_2^2}$$
 is (g = 10 m/s²)

b) 5/6

a) 6/5

13. **Statement 1:** Air is more elastic than iron.

Statement 2: Elasticity is directly proportional to compressibility and air is more compressible than iron.

- a) If both Assertion and Reason are true and reason is correct explanation of Assertion.
- b) If both Assertion and Reason are true but reason is not the correct explanation of Assertion.

c) 1

- c) If Assertion is true but reason is false.
- d) If Assertion is false but reason is true
- 14. An object of specific gravity **p** is hung from a thin steel wire. The fundamental frequency for transverse standing waves in the wire is 300 Hz. The object is immersed in water, so that one half of its volume is submerged. The new fundamental frequency (in Hz) is

a)
$$300\left(\frac{2\rho-1}{2\rho}\right)^{1/2}$$
 b) $300\left(\frac{2\rho}{2\rho-1}\right)^{1/2}$ c) $300\left(\frac{2\rho}{2\rho-1}\right)$ d) $300\left(\frac{2\rho-1}{2\rho}\right)$

15. Regarding speed of sound in gas match the following

List-I

List-II

A) Temperature of gas is made 4 times and pressure 2 times
B) Only pressure is made 4 times without change in temperature
C) Only temperature is changed to 4 times
D) Molecular mass of the gas is made 4 times
a) A-Q, B-R, C-P, D-S
b) A-Q, B-R, C-Q, D-S

Passage: [Following 2 questions]

Suppose A_i be the amplitude of incident wave, A_r of reflected wave and A_t of transmitted wave then

$$A_r = \frac{v_2 - v_1}{v_1 + v_2} A_i A_t = \frac{2v_2}{v_1 + v_2} A_i$$

Power of a traveling wave is given by $P = \frac{1}{2}\rho\omega^2 A^2 sv$ and intensity $I = \frac{1}{2}\rho\omega^2 A^2 v$.

16. If P_i , P_r and P_t are powers of incident, reflected and transmitted waves and I_i , I_r and I_t the corresponding intensities, then

a)
$$P_i = P_r + P_t$$
 b) $I_i = I_r + I_t$

- c) Both (a) and (b) are correct d) Both (a) and (b) are wrong
- 17. Under what conditions 75% of incident energy is transmitted
 - a) $\frac{v_1}{v_2} = \frac{1}{2}$ *b) $\frac{v_1}{v_2} = \frac{1}{3}$ c) $\frac{v_1}{v_2} = \frac{1}{4}$ d) $\frac{v_1}{v_2} = \frac{2}{3}$

18. One mole of a monoatomic ideal gas undergoes the process A → B in the given P-V diagram. The specific heat for this process is

a) $\frac{3R}{2}$ b) $\frac{13R}{6}$ c) $\frac{5R}{2}$ d) 2R

19. Consider the two insulating sheets with thermal resistances R_1 and R_2 as shown in figure. The temperature Θ is

20. A horizontal ray of light passes through a prism of \$\$\mu\$ = 1.5 whose apex angle is 4° and then strikes a vertical mirror M as shown. For the ray after reflection to become horizontal, the mirror must be rotated through an angle of

 $6P_0$

 $3P_0$

a) 2° b) 3° c) 4° d) 1°

21. A cell develops the same power across two resistances R_1 and R_2 separately. The internal resistance of the cell is

a) $R_1 + R_2$ b) $\frac{R_1 + R_2}{2}$ c) $\sqrt{R_1 R_2}$ d) $\frac{\sqrt{R_1 R_2}}{2}$

- 22. A conducting wire bent in the form of a parabola $y^2 = 2x$ carries a current i = 2A as shown in figure. This wire is placed in a uniform magnetic field $\vec{B} = -4\hat{k}$ tesla. The magnetic force on the wire is (in newton)
 - a) -16i b) 32i
 - c) $-32\hat{i}$ d) $16\hat{i}$
- 23. Figure shows a square current carrying loop ABCD of side 2 m and current i = $\frac{1}{2}$ A. The magnetic moment \vec{M} of the loop is
 - a) $(\hat{i} \sqrt{3}\hat{k})A m^2$ b) $(\hat{j} \hat{k})A m^2$
 - c) $(\sqrt{3}\hat{i} + \hat{k})A m^2$ d) $(\hat{i} + \hat{k})A m^2$
- 24. Some magnetic flux is changed from a coil of resistance 10 **Q**. As a result an induced current is developed in it, which varies with time shown in figure. the magnitude of change in flux through the coil webers is 0.1
 - a) 2 b) 4
 - c) 6 d) 8
- 25. Two concentric and coplanar circuit coils have radii 'a' and 'b' (>> a) as shown in figure. resistance of the inner coil is R. Current in the outer coil is increased from 0 to i, then the total charge circulating the inner coil is
 - a) $\frac{\mu_0 ia^2}{2Rb}$ b) $\frac{\mu_0 iab}{2R}$ c) $\frac{\mu_0 i}{2a} \frac{\pi b^2}{R}$ d) $\frac{\mu_0 ib}{2\pi R}$
- 26. Assertion: Reactance offered by an Inductor increases with the frequency of the AC source.

Reason: The current leads the potential in a purely inductive network by $\pi/2$.

- a) If both Assertion and Reason are true and reason is correct explanation of Assertion.
- b) If both Assertion and Reason are true but reason is not the correct explanation of Assertion.
- *c) If Assertion is true but reason is false.
- d) If assertion is false and reason is true.
- 27. A radioactive substance X decays into another radioactive substance Y. Initially only X was present. A_x and A_y are the disintegration constants of X and Y. N_x and N_y are the number of nuclei of X and Y at any time t. Number of nuclei N_y will be maximum when

a)
$$\frac{N_y}{N_x - N_y} = \frac{\lambda_y}{\lambda_x - \lambda_y}$$

b) $\frac{N_x}{N_x - N_y} = \frac{\lambda_x}{\lambda_x - \lambda_y}$
c) $\lambda_y N_y = \lambda_x N_x$
d) $\lambda_y N_x = \lambda_x N_y$

as

in

28. The angular momentum of an electron in an orbit is quantized because it is a necessary condition for the compatibility with

- a) The wave nature of electron
- b) Particle nature of electron
- c) Paulli's exclusion behaviour d) None of the above

29. In X-ray tube when the accelerating voltage V is halved, the difference between the wavelengths of Ka line and minimum wavelength of continuous X-ray spectrum

- a) Remains constant b) Becomes more than two times
- c) Becomes half d) Becomes less than two times

30. The circuit shown in the figure contains two diodes each with a forward resistance of 50 **Q** and with infinite backward resistance. If the battery voltage is 6 V, the current through the 100 **Q** resistance (in amperes) is

a) Zero	b) 0.02
c) 0.03	d) 0.036

KEY

1) a	2) b	3) a	4) a	5) d
6) d	7) a	8) b	9) b	10) b
11) d	12) a	13) d	14) a	15) c
16) a	17) b	18) b	19) d	20) a
21) c	22) b	23) a	24) a	25) a
26) c	27) с	28) a	29) b	30) d
1. (a)	NN.S	<u>SOLUTIC</u>	<u>DNS</u>	

SOLUTIONS

- $\vec{v} = a\hat{i} + bt\hat{j}$
- $\therefore \vec{a} = b\hat{j}$
- \therefore Total acceleration = b
- Speed, $v = (a^2 + b^2 t^2)^{1/2}$

: Tangential acceleration = $\frac{dv}{dt} = \frac{1}{2}(a^2 + b^2t^2)^{-1/2}(2b^2t)$

At
$$t = \frac{\sqrt{3}a}{b}$$

Tangential acceleration = $t = \frac{\sqrt{3}b}{2}$ and normal acceleration = $\sqrt{b^2 - \frac{3b^2}{4}} = \frac{b}{2}$

2. (b)

From superposition principle, $F_1 = F_r + F_c$ Here, F_r = force due to remaining part = F_2 And F_c = force due to mass on the cavity

Now,
$$F_1 = \frac{GMm}{(3R)^2} = \frac{GMm}{9R^2}$$
, $F_c = \frac{G\left(\frac{M}{8}\right)m}{\left(\frac{5}{2R}\right)^2} = \frac{GMm}{50R^2}$

 $\therefore F_2 = F_1 - F_c = \frac{41GMm}{450R^2} \Longrightarrow \frac{F_2}{F_1} = \frac{41}{50}$

3. (a)

$$R = 2\sqrt{h(H-h)}$$

Here, h = height from top and H - h from bottom.

4. (a)

Phase difference corresponding to $y_1 = -\pi/2$ and that for $y_2 = +\pi/2$

: Average intensity between
$$y_1$$
 and $y_2 = \frac{1}{\pi} \int_{-\pi}^{\pi/2} I_{max} \cos^2(\phi/2) d\phi = I_{max} (\pi + 2)/2\pi$

$$\therefore$$
 The required ratio = $\frac{1}{2} \left(1 + \frac{2}{\pi} \right)$

5. (d)

With increase in the value of E_1 , current passing through potentiometer wire will increase. With increase in R_1 , current passing through potentiometer wire will decrease.

tion.d

6. (d)

Potential of innermost shell is zero.

$$\therefore \frac{q_1}{r} + \frac{q_2}{2r} + \frac{q_3}{3r} = 0 \Longrightarrow 6q_1 + 3q_2 + 2q_3 = 0 \qquad \dots (1)$$

Similarly, potential on outermost shell is also zero.

$$\therefore \frac{q_1}{3r} + \frac{q_2}{3r} + \frac{q_3}{3r} = 0 \Longrightarrow q_1 + q_3 = -q_2 \qquad \dots (2)$$

Solving eqs.(1) and (2), we get

$$q_1 = -\frac{q_2}{4}, \frac{q_3}{q_1} = 3 \text{ and } \frac{q_3}{q_2} = -\frac{3}{4}$$

 \therefore Options (a), (b) and (c) are correct.

7. (a)

Mean values of refractive index
$$\mu = \frac{1.45 + 1.56 + 1.44 + 1.54 + 1.53 + 1.54}{6} = 1.51$$

Absolute errors are $1.51 - 1.46 = 0.06$
 $1.51 - 1.56 = -0.05$
 $1.51 - 1.54 = -0.03$
 $1.51 - 1.54 = -0.03$
 $1.51 - 1.54 = -0.03$
 $1.51 - 1.53 = -0.02$
Mean absolute error $= \frac{0.06 + 0.05 + 0.03 + 0.07 + 0.03 + 0.02}{6} = 0.04$

8. (b)

Particle will strike the point B if velocity of particle with respect to platform is along AB or component of its relative velocity along AD is zero. i.e.

$$u \cos \theta = v \text{ or } \theta = \cos^{-1}\left(\frac{v}{u}\right)$$

9. (b)

For a = 0, tension is constant throughout, $T = 4 \mu g = 20 N$

$$F = T + 2\mu g = 30 N$$

10. (b)

Potential energy of particle at $x = \sqrt{\frac{2E}{k}}$ is zero. (x > 0)

$$\therefore$$
 KE = E

$$\Rightarrow \frac{1}{2}mv^2 = E \Rightarrow v\sqrt{\frac{2E}{m}}$$

Let f be the friction on the ring towards right, 'a' its linear acceleration and α the angular acceleration about center of mass.

Point of contact P is momentarily at rest, i.e., ring will rotate about P.

$$\therefore \alpha = \frac{\tau_{\rm P}}{I_{\rm P}} = \frac{F(2R)}{2MR^2} = \frac{F}{MR}$$

Now $F + f = Ma = MR\alpha = F$ or f = 0.

12. (a)

$$y = Kt^{2}$$

 $\frac{d^{2}y}{dt^{2}} = 2K \Rightarrow a_{y} = 2m/s^{2}(as \ K = 1m/s^{2})$
 $T_{1} = 2\pi \sqrt{\frac{1}{g}} \text{ and } T_{2} = 2\pi \sqrt{\frac{1}{g+a_{y}}}$
 $\therefore \frac{T_{1}^{2}}{T_{2}^{2}} = \frac{g+a_{y}}{g} = \frac{10+2}{10} = \frac{6}{5}$
13. (d)

The diagrammatic representation of the given problem is shown in figure. The expression of

JUCC

$$\rho_w = 1 \text{ g/cm}^3$$

In air $T = mg = (V\rho)g$

$$\therefore v = \frac{1}{2l} \sqrt{\frac{A\rho g}{\mu}}$$

When the object is half immersed in water

$$T' = mg - upthrust = V_{\rho}g - \left(\frac{V}{2}\right)\rho_{w}g = \left(\frac{V}{2}\right)g(2\rho - \rho_{w})$$

The new fundamental frequency is $v' = \frac{1}{2l} \times \sqrt{\frac{T}{m}} = \frac{1}{2l} \sqrt{\frac{(V_g/2)(2\rho - \rho_w)}{\mu}} \dots (2)$

$$\therefore \frac{\mathbf{v}'}{\mathbf{v}} = \sqrt{\frac{2\rho - \omega_{w}}{2\rho}} \Rightarrow \mathbf{v}' = \mathbf{v} \left(\frac{2\rho - \omega_{w}}{2\rho}\right)^{1/2} = 300 \left(\frac{2\rho - 1}{2\rho}\right)^{1/2} \mathrm{Hz} \,.$$

15. (Q, R, Q, S)

$$v = \sqrt{\frac{\gamma RT}{M}} = \sqrt{\frac{\gamma P}{\rho}}$$

Speed does not change with change in pressure unless temperature is charged.

16. (a)

Energy per unit time (i.e., P) at junction will remain constant. Not the energy per unit area per unit time (i.e., intensity). Because is transmission area of medium may change.

17. (b)

In reflected and incident wave all other factor are common. So, it is only amplitude which can change the power 75% is transmitted. Hence, 25% or 1/4th will reflected back.

Or
$$\frac{A_i}{A_r} = 2 \Rightarrow \frac{v_1 + v_2}{v_2 - v_1} = 2 \Rightarrow \frac{v_1}{v_2} = \frac{1}{3}$$

 $\cdot \mathbf{A} = \frac{\mathbf{A}_i}{\mathbf{A}_i} (as \mathbf{P} \propto \mathbf{A}^2)$

18. (b)

Specific heat $C = \frac{\Delta Q}{\Delta T} = \frac{1}{\Delta T} (\Delta U + W) = C_v + \frac{W}{\Delta T}$

For the given process
$$W = 4V_0 \frac{9P_0}{2} = 18P_0V_0$$

$$\Delta I \quad \Delta I$$

For the given process $W = 4V_0 \frac{9P_0}{2} = 18P_0V_0$
Also, $\Delta T = T_2 - T_1 = \frac{(6P_0)(5V_0)}{R} - \frac{(3P_0)V_0}{R} = \frac{27P_0V_0}{R}$
and $C_v = \frac{3}{2}R$

and
$$C_v = \frac{3}{2}R$$

$$\therefore C = \frac{3R}{2} + \frac{2R}{3} = \frac{13R}{6}$$

19. (d)

For the two sheets $H_1 = H_2$ (H = rate of heat transfer)

Or
$$\frac{\theta_1 - \theta}{R_1} = \frac{\theta - \theta_2}{R_2}$$

Solving this we get, $\theta = \frac{\theta_1 R_2 + \theta_2 R_1}{R_1 + R_2}$

20. (a)

$$\delta = (\mu - 1)A = (1.5 - 1)(4) = 2^{\circ}$$

 $i = \delta = 2^{\circ}$

Let the mirror be rotated by an angle θ

so that $i' = (2^{\circ} + \theta)$ Then, $\delta_{total} = 180^{\circ}$ $Or \; \delta + 180^\circ - 2i' = 180^\circ$

$$\therefore \delta = 2i'$$

Or $2^\circ = 2(2 + \theta) \Longrightarrow \theta = -2^\circ$

Here, negative sign implies that i gets decreased or i' = 0.

i.e. light should fall normally on mirror.

21. (c)

Let r be the internal resistance of the cell and E its EMF. When connected across the resistance R₁ in the circuit, current passing through the resistance is: $i = \frac{E}{R_1 + r}$

$$\therefore P_{1} = i^{2}R_{1} = \left(\frac{E}{R_{1} + r}\right)^{2}R_{1}$$
Similarly $P_{2} = \left(\frac{E}{R_{2} + r}\right)^{2}R_{2}$
Given that $P_{1} = P_{2}$
Substituting the values, we get $r = \sqrt{R_{1}R_{2}}$.
22. (b)
 $\vec{F}_{AOB} = \vec{F}_{AB} = i(\vec{I} \times \vec{B})$
Here, $AB = 2\sqrt{2 \times 2} = 4m$
 $\therefore \vec{F}_{AB} = 2\left[(-4\hat{j}) \times (-4\hat{k})\right] = 32\hat{i}$
23. (a)
 $\vec{DA} = -2\cos 30^{\circ}\hat{i} - 2\sin 30^{\circ}\hat{k} = -\sqrt{3}\hat{i} - \hat{k}$
 $\vec{AB} = 2\hat{j}$
 $\therefore \vec{M} = i(\vec{DA} \times \vec{AB}) = \frac{1}{2}\left[(-\sqrt{3}\hat{i} - \hat{k}) \times (2\hat{j})\right] = -\sqrt{3}\hat{k} + \hat{i} = (i - \sqrt{3}\hat{k})A - m^{2}$
24. (a)
 $|dq| = \frac{d\Phi}{R} = idt = Area under i-t graph$
 $\therefore d\phi = (Area under i-t graph)(R) = \frac{1}{2}(4)(0.1)(10) = 2Wb$.
25. (a)

$$dq = \frac{dq}{R}$$

$$\phi_{i} = 0$$

$$\phi_{f} = \left(\frac{\mu_{0}}{2\pi}\frac{i}{b}\right)(\pi a^{2}) = \frac{\mu_{0}ia^{2}}{2b}$$

$$\therefore d\phi = \frac{\mu_{0}ia^{2}}{2b}$$
So, $dq = \frac{\mu_{0}ia^{2}}{2Rb}$
26. (c)

27. (c)

Net rate of formation of Y at any time t is : $\frac{dN_y}{dt} = \lambda_x N_x - \lambda_y N_y$

N_y is maximum when
$$\frac{dN_y}{dt} = 0 \Longrightarrow \lambda_x N_x = \lambda_y N_y$$
.

28. (a)

 $mvr = \frac{nh}{2\pi}$

$$\frac{h}{mv} = \frac{2\pi r}{n}$$

 $\frac{h}{mv}$ = de-Broglie wavelength

29. (d)

 $\Delta \lambda = \lambda_{K\alpha} - \lambda_{min}$

When V is halved λ_{min} becomes two times but $\lambda_{K\alpha}$ remains the same.

$$\therefore \Delta \lambda' = \lambda_{K\alpha} - 2\lambda_{\min} = 2(\Delta \lambda) - \lambda_{K\alpha}$$
$$\therefore \Delta \lambda' < 2(\Delta \lambda)$$

30. (b)

In the circuit, diode D_1 is forward biased, while D_2 is reverse biased. Therefore, current i (through D_1

JC

or.

and 100
$$\Omega$$
 resistance) will be $i = \frac{6}{50 + 100 + 150} = 0.02A$

Here, 50 Ω is the resistance of D₁ in forward biasing.

JEE MAIN Chemistry Model Paper with Key

1.	Calculate the de – B	Broglie wave length of	the electron in the gr	ound state of hydrogen atom
	given that its kinetic	c energy is 13.6 <i>ev</i> (1 <i>e</i>	$v = 1.602 \times 10^{-19} J$)	
	1) $3.328 \times 10^{-10} m$	2) 2.328×10 ⁻¹⁰ m	3) $3.328 \times 10^{10} m$	4) 2.338 x 10m
2.	Mass of sodium met	tal that contains same	e number of atoms tha	at are present in 36g of Al is
	1) 23g	2) 36g	3) 30.66g	4) 46g
3.	The order of reactiv	vity of halogens towar	ds halogenation of all	kane is
	1) $F_2 > Br_2 > Cl_2$	2) $F_2 > Cl_2 > Br_2$	3) $Cl_2 > F_2 > Br_2$	4) $Cl_2 > Br_2 > F_2$
4.	Stability of ter-buty	d cation is explained h	ру	G
	1) Electrometric		2)Mesomeric effect	\mathbf{O}
	3) Resonance effect		4) Both Inductive and	d Hyper congugation
5.	Which of the follow	ing is electrophile	X	
	1) ROH	2) <i>BF</i> ₃	3) <i>NH</i> ₃	4) \overline{OR}
6.	The maximum amo	unt of $BaSO_4$ that can	n be obtained on mixi	ng of 0.5 mol $BaCl_2$ with 1 mol
	H_2SO_4 is		XV.	
	1) 0.5 mol	2) 0.1 mol	3)0.15 mol	4) 0.2 mol
	CH ₃			
7.		$\xrightarrow{BH_3/THF} A \xrightarrow{H^{(+)}} B$	The product 'B' is	
	CH	3	CH ₃	CH ₃
	1) 18 g glucose (C_6H_{12})	O_6) is added to 178.2 g	3) water. The vapour pre	4) All this aqueous soluti
	1) 759 torr	2) 7.60 torr	3) 76.0 torr	4) 752.40 torr
8.	A solid is made of tw	wo elements P&Q. Ato	oms P are in ccp arrang	gement and atoms Q occupy all the
	octahedral voids and	half of the tetrahedral	voids present then the	simplest formula of the compound
	is			
	1)PQ ₂	2) P ₂ Q	3) PQ	$4) \mathbf{P}_2 \mathbf{Q}_2$
9.	Which shows the hi	ghest lattice energy?		
	1)RbF	2)CsF	3) NaF	4) KF
10.	In the reactions give	en below		

 $R - Cl \xrightarrow{(i) KCN, (ii) LiAlH_4}$ Product A $R-Cl \xrightarrow{(i)AgCN,(ii)LiAlH_4} \rightarrow$ Product B The compounds A and B are : 1) Chain isomers 3) functional isomers 2) position isomers 4) metamers 11 A gaseous reaction was carried out, first keeping the volume constant and next keeping the Pressure constant. In the second experiment, there was an increase in volume. The heats of reaction were different, because 1) in the first case the energy was spent to keep the volume constant 2) in the second case the energy was spent to expand the gases 3) specific heat of compressed gases is more 4) specific heats of rarefied gases is more 12 Which of the following equations represents that provides the enthalpy of formation of CH₃Cl $1) C_{(s)} + HCl_{(g)} + H_{2_{(g)}} \rightarrow CH_{3}Cl_{(g)} \qquad 2) C_{(s)} + 3H_{(g)} + Cl_{(g)} \rightarrow CH_{3}Cl_{(g)}$ $3) C_{(s)} + \frac{3}{2}H_{2_{(g)}} + \frac{1}{2}Cl_{2_{(g)}} \rightarrow CH_{3}Cl_{(g)} \qquad 4) CH_{4_{(g)}} + Cl_{2_{(g)}} \rightarrow CH_{3}Cl_{(g)} + HCl_{(g)}$ Hybridisation of Cu in the complex $[Cu(H_2O)_4]^{2+}$ is dsp², shape of the ion will be 13. 2) Tetrahedral (3) Distorted rectangle 1) Square planar 4) octahedral N_2 and O_2 are converted into mono anions N_2^- and O_2^- respectively, which of the following 14. statements is wrong? 1)The nitrogen – nitrogen bond in N_2^- is weaker than in N_2 2)In O_2^- , O – O bond order increases 3) N_2^- is paramagnetic 4) O_2 has more magnetic moment than O_2^- . 15 Of the following acids I : hypo phosphorous acid II: hydrofluoric acid **III:** oxalic acid **IV:** glycine 1. I, II are monobasic, III dibasic acid and IV amphoteric 2. II monobasic, I, III dibasic acid, IV amphoteric 3. I monobasic, II, III dibasic, IV amphoteric

4. I, II, III dibasic, IV amphoteric

16.	The correct stability order for the following species is									
	1) I>II>IV>III	2) III>IV>II>I	3) IV>III>II>I	4) IV>III>I>II						
17.	Which of the follow	ving acids has the hig	hest dissociation const	ant						
	1) 2-Fluoro propano	ic acid	2) 3-Fluoro propanoi	c acid						
	3) 3-Bromo propana	oic acid	4) 2-Bromo propanoi	ic acid						
18.	At which of the fou	r conditions, the dens	sity of nitrogen will be	the largest?						
	1) STP		2) 273 K and 2 atm							
	3) 546 K and 1 atm		4) 546 K and 2 atm	CO'						
19.	$\alpha - D - (+)$ glucose an	nd $\beta - D - (+)$ glucos	e are	<u></u>						
	1) Anomers	2) Enantiomers	3) Conformers	4) Epimers						
20.	The compound form	med in the positive te	st for nitrogen with th	e Lassaigne solution of an						
	organic compound		~0							
	1) $\operatorname{Fe}_{4}\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]_{3}$	2) $\operatorname{Fe}(\operatorname{CN})_{3}$	3) Na ₃ [Fe(CN) ₆]	4) $\operatorname{Na}_{4}\left[\operatorname{Fe}(\operatorname{CN})_{5}\operatorname{NOS}\right]$						
21.	A solution containi	ng 2.625 g of CoCl_3 .	6NH ₃ is passed throug	gh a cation exchanger. The						
	chloride ions obtain	ned in solution were t	created with excess of A	$AgNO_3$ to give 4.78 g of AgCl.						
	The formula of the	complex is								
	1) $\left[C_0 C_1 (NH_3)_5 \right] C_0 C_1 (NH_3)_4 \right]$	Cl ₂ .NH ₃	$2) \left[Co(NH_3)_6 \right] Cl_3$							
	$3) \left[CoCl_2 \left(NH_3 \right)_4 \right]$	C1.2NH ₃	4) $\left[C \circ C l_3 \left(N H_3 \right)_3 \right]$	3 N H ₃						
22.	Total number of lo	ne pair of electrons o	n central atom of XeO	DF_4						
	1) 0	2) 1	3) 2	4) 3						
23.	The heat of neutro	lisation of HCl by N	OU is 550 kl mal	⁻¹ . If the heat of neutralisation of						
23.			rgy of dissociation of H							
	1) – 43.8 kJ	2) 43.8 kJ	3) 68 kJ	4) – 68 kJ						
24.	Buna-N synthetic r	ubber is a co-polyme	r of							
	1) $CH_2 = CH - CN$	$\& CH_2 = CH - C_1 =$	$= CH_2$							
		CH ₃								
	2) $CH_2 = CH - C_1 =$	$\mathrm{CH}_2 \& \mathrm{CH}_2 = \mathrm{CH} -$	$CH = CH_2$							
	Ċl									

3) $CH_2 = CH - CH = CH_2 \& CH_2 = CH - C_6 H_5$ (4)													
	$CH_2 = CH - CN \& CH_2 = CH - CH = CH_2$												
25.	At a	certain	temp	erature	2 mol	es of car	rbonm	onoxide	and 3	moles o	f chlo	rine wer	re allowed to
	reac	h equili	ibriun	1 accord	ling	to the r	eactior	n CO +	Cl ₂ –	 (CoCl ₂	in a 5 l	lit vessel. At
	equil	librium	if one	mole of	CO is	present	then e	quilibri	um co	nstant fo	or the	reaction	is :
	1) 2			2) 2.5		-	3) 3.	0		4) 4			
26.	In a	certain	react	ion 10%	of th	e reacta	nt dec	ompose	s in th	e first h	our, 2	20% in s	second hour,
30% in third hour and so on. What are the dimensions of rate constant													
	1) hour ⁻¹ 2) mol lit ⁻¹ hour ⁻¹												
	3) lit	mol^{-1} h	our ⁻¹				4) m	ol hour	1		C	.O`	•
27. T	he slo	pe of tl	ie stra	aight lin	e graj	oh betwo	een log	g x/m a	nd log	P for t	he ad	sorption	of a gas on
	olid is	-		C		•			C			-	C
	1) k			2) 1	og k		3) n			4) l/n			
28. T	The BC)D valu	es of	four sar	nples	of water	· A,B,0	C and D	are 1	56 ppm,	, 120]	ppm, 20	ppm and 5
p	opm re	spective	ely. Th	ne most j	ollute	ed and le	east pol	lluted w	ater sa	mples a	re		
	1) Aa	&В		2) Ba	кC		3) A	&D		4) C&	хD		
29.	Whie	ch of th	e follo	wing mo	olecule	es is/are l	having	zero di	polem	oment			
	I. No	Cl ₃		II. P	Cl ₅ I	II. <i>SF</i> ₆	IV.	SCl_4					
	1) on	ly II , I	V	2) on	y I , Il	(3) only	II , III			4) onl	y III, İ	IV	
				•		0							
30.	Nam	e of the	struc	ture of s	ilicate	s in whie	ch thre	e oxyge	n aton	ns of silic	cate io	n are sha	ared
	1) Py	rosilica	te	C			2) Sł	neet silic	ate				
	3) Li	near cha	ain sili	cate			4) Tl	hree dim	ension	al silicate	e		
			2										
		2.				•	KE	Y					
			•										
1)	1	2)	3	3)	4	4)	4	5)	2	6)	1	7)	3
8)	1	9)	3	10)	3	11)	2	12)	3	13)	1	14)	2
15)	1	16)	1	17)	1	18)	2	19)	1	20)	1	21)	2
22)	2	23)	4	24)	2	25)	2	26)	4	27)	3	28)	3
29)	3	30) 1	l										