MATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS.

Note: This question paper consists of three sections A,B and C.

SECTION -A

Very Short Answer Type Questions.

$10 \times 2=20$

1. Show that the equation of a circle having the line segment joining $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ as diameter is $\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0$.
2. Show that the points $(-6,1),(2,3)$ are Conjugate points with respect to the circle $x^{2}+y^{2}-2 x+2 y+1=0$
3. Find equation of the tangent and normal to the parabola $y^{2}=6 x$ at the positive end of the latus rectum.
4. Find the equation of the common chord of the following pair of circles.
$x^{2}+y^{2}-4 x-4 y+3=0, \quad x^{2}+y^{2}-5 x-6 y+4=0$
5. If the lines $3 x-4 y=12$ and $3 x+4 y=12$ meets on a hyperbola $S=0$ then find the eccentricity of the hyperbola $S=0$.
6. $\int \frac{a x^{n-1}}{b x^{n}+C} d x$, where $n \in N, a, b, c$ are real numbers, $b \neq 0$ and $x \in I \subset\left\{x \in R: x^{n} \neq-\frac{c}{b}\right\}$
7. $\int \frac{\sec x}{(\sec x+\tan x)^{2}} d x$ on $I \subset R-\left\{(2 n+1) \frac{\pi}{2}, n \in Z\right\}$.
8. Find the area bounded by the curve $y=\log x$, the X-axis and the straight line $\mathrm{x}=\mathrm{e}$.
9. Obtain the differential equation which corresponds to each of the following family ellipses with centres at the origin and having coordinate axes as axes.
10. Evaluate $\int_{0}^{1} \mathrm{x} \cdot \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{dx}$

SECTION -B

Short Answer Type Questions.

Answer Any Five of the Following
11. Find the equation of tangents the circle $x^{2}+y^{2}-10=0$ at the points whose abscissa are 1
12. Find the equation of the common tangent of the circles $x^{2}+y^{2}+10 x-2 y+22=0$, $x^{2}+y^{2}+2 x-8 y+8=0$ at their point of contact
13. A man running on a race course notices that the sum of the distances of the two flag posts from him is always 10 m . and the distance between the flag posts is 8 m . Find the equation of the race course traced by the man.
14. Show that the tangents to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at points whose eccentric angles differ by $\pi / 2$ intersect on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$.
15. Find the equations of the tangents to the hyperbola $x^{2}-4 y^{2}=4$ which are
(i) Parallel
(ii) Perpendicular to the line $x+2 y=0$.
16. Find the area enclosed between $y=x^{2}-5 x$ and $y=4-2 x$.
17. Solve $2 \frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{2}}$

SECTION- C

Long Answer Type Questions.

Answer Any Five of the Following
18. Find the equation of the circle which intersects each of the following circles orthogonally
$x^{2}+y^{2}+2 x+4 y+1=0 ; x^{2}+y^{2}-2 x+6 y-3=0 ; \quad 2 x^{2}+2 y^{2}+6 x+8 y-3=0$
19. Show that the circles $x^{2}+y^{2}-6 x-2 y+1=0 ; x^{2}+y^{2}+2 x-8 y+13=0$ Touch each other. Find the point of contact and the equation of the common tangent at their point of contact.
20. Show that the common tangent to the circle $2 x^{2}+2 y^{2}=a^{2}$ and the parabola $y^{2}=4 a x$ intersect at the focus of the parabola $y^{2}=-4 a x$.
21. $\int \frac{2 \cos \mathrm{x}+3 \sin \mathrm{x}}{4 \cos \mathrm{x}+5 \sin \mathrm{x}} \mathrm{dx}$
22. Obtain the reduction formula for $I_{n}=\int \csc ^{n} x d x$, n being a positive integer, $n \geq 2$ and deduce the value of $\int \operatorname{cosec}^{5} x d x$.
23. Evaluate $\int_{0}^{\pi / 2} \frac{\sin ^{2} x}{\cos x+\sin x} d x$
24. Solve $\frac{d y}{d x}\left(x^{2} y^{3}+x y\right)=1$

Maths 2B Paper 2 - Solutions

1. Show that the equation of a circle having the line segment joining $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}\right.$, y_{2}) as diameter is $\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0$.

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point on the circle. Given points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$.
Now $\left\lfloor\underline{A P B}=\frac{\pi}{2}\right.$. (Angle in a semi circle.)
Slope of AP. Slope of BP $=-1$

$$
\begin{aligned}
& \Rightarrow \frac{y-y_{1}}{x-x_{1}} \frac{y-y_{2}}{x-x_{2}}=-1 \\
& \Rightarrow\left(y-y_{2}\right)\left(y-y_{1}\right)=-\left(x-x_{2}\right)\left(x-x_{1}\right) \\
& \Rightarrow\left(x-x_{2}\right)\left(x-x_{1}\right)+\left(y-y_{2}\right)\left(y-y_{1}\right)=0
\end{aligned}
$$

2) Show that the points $(-6,1),(2,3)$ areConjugate points with respect to the circle $x^{2}+y^{2}-2 x+2 y+1=0$

Sol

$S=x^{2}+y^{2}-2 x+2 y+1=0$
Points are (-6, 1), $(\mathbf{2}, 3)$
Now $S_{12}=-6.2+1.3-(-6+2)+(1+3)+1$
$=-12+3+4+4+1=0$.
Therefore given points are conjugate points.
3. Find equation of the tangent and normal to the parabola $y^{2}=6 x$ at the positive end of the latus rectum.

Sol. Equation of parabola $y^{2}=6 x$
$4 a=6 \Rightarrow a=3 / 2$
Positive end of the Latus rectum is $(\mathrm{a}, 2 \mathrm{a})=\left(\frac{3}{2}, 3\right)$
Equation of tangent $\mathrm{yy}_{1}=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_{1}\right)$

$$
\begin{aligned}
& y y_{1}=3\left(x+x_{1}\right) \\
& 3 y=3\left(x+\frac{3}{2}\right)
\end{aligned}
$$

$2 y-2 x-3=0$ is the equation of tangent
Slope of tangent is 1
Slope of normal is -1
Equation of normal is $y-3=-1\left(x-\frac{3}{2}\right)$

$$
2 x+2 y-9=0
$$

4. Find the equation of the common chord of the following pair of circles.

$$
x^{2}+y^{2}-4 x-4 y+3=0, \quad x^{2}+y^{2}-5 x-6 y+4=0
$$

Sol. $S=x^{2}+y^{2}-4 x-4 y+3=0$

$$
S^{1}=x^{2}+y^{2}-5 x-6 y+4=0
$$

Common chord is $\mathrm{S}-\mathrm{S}^{\prime}=0$

$$
\begin{aligned}
& \left(x^{2}+y^{2}-4 x-4 y+3\right)-\left(x^{2}+y^{2}-5 x-6 y+4\right)=0 \\
& x+2 y-1=0
\end{aligned}
$$

5. If the lines $3 x-4 y=12$ and $3 x+4 y=12$ meets on a hyperbola $S=0$ then find the eccentricity of the hyperbola $S=0$.

Sol. Given lines $3 x-4 y=12,3 x+4 y=12$
The combined equation of the lines is
$(3 x-4 y)(3 x+4 y)=144$
$9 x^{2}-16 y^{2}=144$
$\frac{x^{2}}{\frac{144}{9}}-\frac{y^{2}}{\frac{144}{16}}=1 \Rightarrow \frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
$a^{2}=16, b^{2}=9$
Eccentricity $e=\sqrt{\frac{a^{2}+b^{2}}{a^{2}}}$
$=\sqrt{\frac{16+9}{16}}=\sqrt{\frac{25}{16}}=\frac{5}{4}$
6. $\int \frac{a x^{n-1}}{b x^{n}+C} d x$, where $n \in N, a, b, c$ are real numbers, $b \neq 0$ and $x \in I \subset\left\{x \in R: x^{n} \neq-\frac{c}{b}\right\}$

Sol. $\int \frac{a x^{n-1}}{b x^{n}+C} d x$ let $\mathrm{bx}+\mathrm{C}=\mathrm{t} \Rightarrow \mathrm{nbx} \mathrm{n}^{\mathrm{n}-1} \mathrm{dx}=\mathrm{dt}, \mathrm{x}^{\mathrm{n}-1} \mathrm{dx}=\frac{1}{\mathrm{nb}} \mathrm{dt}$

$$
\begin{aligned}
& \int \frac{\mathrm{ax}^{\mathrm{n}-1}}{\mathrm{bx} x^{\mathrm{n}}+\mathrm{C}} \mathrm{dx}=\frac{\mathrm{a}}{\mathrm{nb}} \int \frac{\mathrm{dt}}{\mathrm{t}}=\frac{\mathrm{a}}{\mathrm{nb}} \log |\mathrm{t}|+\mathrm{dt} \\
& =\frac{\mathrm{a}}{\mathrm{nb}} \log |\mathrm{bx}+\mathrm{c}|+\mathrm{k}
\end{aligned}
$$

7. $\int \frac{\sec x}{(\sec x+\tan x)^{2}} d x$ on $I \subset R-\left\{(2 n+1) \frac{\pi}{2}, n \in Z\right\}$.

Sol: $\int \frac{\sec x}{(\sec x+\tan x)^{2}}$

$$
=\int \frac{\sec x(\sec x+\tan x)}{(\sec x+\tan x)^{3}} d x
$$

Let $\sec x+\tan x=t$
Then $\left(\sec x \tan x+\sec ^{2} x\right) d x=d t$
$\Rightarrow \sec \mathrm{x}(\sec \mathrm{x}+\tan \mathrm{x}) \mathrm{dx}=\mathrm{dt}$
$\therefore \int \frac{\sec \mathrm{x}}{(\sec \mathrm{x}+\tan \mathrm{x})^{2}} \mathrm{dx}$
$=\int \frac{\mathrm{dt}}{\mathrm{t}^{3}}=\int \mathrm{t}^{-3} \mathrm{dt}=\frac{\mathrm{t}^{-2}}{-2}$
$=-\frac{1}{2 t^{2}}=-\frac{1}{2(\sec x+\tan x)^{2}}+c$
8. Find the area bounded by the curve $y=\log x$, the X-axis and the straight line $\mathrm{x}=\mathrm{e}$.

Sol: Area bounded by the curve $y=\log _{c} x$,
X -axis and the straight line $\mathrm{x}=\mathrm{e}$ is

$$
\begin{aligned}
& =\int_{1}^{\mathrm{e}} \log _{\mathrm{e}} \mathrm{xdx} \\
& =[\mathrm{x} \log \mathrm{x}]_{1}^{\mathrm{e}}-\int_{1}^{\mathrm{e}} \mathrm{dx}
\end{aligned}
$$

$\left(\because\right.$ When $\left.\mathrm{x}=\mathrm{e}, \mathrm{y}=\log _{\mathrm{e}} \mathrm{e}=1\right)$

$$
=(e-0)-(e-1)=1 \text { sq. units. }
$$

9. Obtain the differential equation which corresponds to each of the following family
ellipses with centres at the origin and having coordinate axes as axes.
Sol.Equation of ellipse is
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Diff. w.r.t.x,
$\frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x}=0 \Rightarrow y \cdot y_{1}=-\frac{b^{2}}{a^{2}} x$
Diff. w.r.t.x,

$$
\begin{aligned}
& y \cdot y_{2}+y_{1} \cdot y_{1}=-\frac{b^{2}}{a^{2}} \Rightarrow y \cdot y_{2}+2 y_{1}=\frac{y \cdot y_{1}}{x} \\
& \Rightarrow x\left(y \cdot y_{2}+2 y_{1}\right)=y \cdot y_{1}
\end{aligned}
$$

10. $\int_{0}^{1} x \cdot e^{-x^{2}} d x$

Sol. $\int_{0}^{1} \mathrm{x} \cdot \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{dx}=\frac{1}{2} \int_{0}^{1} 2 \mathrm{xe}^{-\mathrm{x}^{2}} d \mathrm{dx}$, put $-\mathrm{x}^{2}=\mathrm{t}$

$$
\begin{aligned}
& \Rightarrow-2 \mathrm{xdx}=\mathrm{dt} \Rightarrow 2 \mathrm{xdx}=-\mathrm{dt} \\
& \mathrm{x}=1 \Rightarrow \mathrm{t}=1, \mathrm{x}=0 \Rightarrow \mathrm{t}=0
\end{aligned}
$$

$$
I=\frac{1}{2} \int_{0}^{-1}-e^{t} d t=\frac{1}{2}\left[-e^{t}\right]_{0}^{-1}
$$

$$
=\frac{1}{2}\left[\mathrm{e}^{0}-\mathrm{e}^{-1}\right]=\frac{1}{2}\left(1-\frac{1}{\mathrm{e}}\right)
$$

11. Find the equation of tangents the circle $\mathbf{x}^{2}+\mathbf{y}^{2}-\mathbf{1 0}=\mathbf{0}$ at the points whose abscissa are 1 Sol. Equation of the circle is $S=x^{2}+y^{2}=10$

Let the point be ($1, \mathrm{y}$)

$$
\begin{aligned}
& 1+y^{2}=10 \Rightarrow y^{2}=9 \\
& Y= \pm 3 .
\end{aligned}
$$

Co - ordinates of P are $(1,3)$ and $(1,-3)$
Equation of the tangent at $P(1,3)$ is $S_{1}=0$.
$\Rightarrow \mathrm{x} .1+\mathrm{y} .3=10$
$\Rightarrow \mathrm{x}+3 \mathrm{y}-10=0$
Equation of the tangent of $\mathrm{P}(1,-3)$ is $\mathrm{S}_{2}=0$
$\Rightarrow \mathrm{x} .1+\mathrm{y}(-3)=10 \Rightarrow \mathrm{x}-3 \mathrm{y}-10=0$
12. Find the equation of the common tangent of the following circles at their point of contact.

$$
x^{2}+y^{2}+10 x-2 y+22=0, x^{2}+y^{2}+2 x-8 y+8=0 .
$$

Sol. $\quad S=x^{2}+y^{2}+10 x-2 y+22=0$
Centre $\mathrm{A}=(-5,1)$, radius $\mathrm{r}_{1}=2$
$S^{\prime}=x^{2}+y^{2}+2 x-8 y+8=0$.
Centre $B=(-1,4)$ radius $r_{2}=3$
$\mathrm{AB}=\sqrt{16+9}=5$
Therefore $\mathrm{AB}=5=3+2=\mathrm{r}_{1}+\mathrm{r}_{2}$.
Given circles touch each other externally.
When circles touch each other, their common tangent is $S-S^{\prime}=0$

$$
\begin{aligned}
& \therefore\left(x^{2}+y^{2}+10 x-2 y+22\right)-\left(x^{2}+y^{2}+2 x-8 y+8\right)=0 \\
& 8 x+6 y+14=0 \text { (or) } 4 x+3 y+7=0
\end{aligned}
$$

13. A man running on a race course notices that the sum of the distances of the two flag posts from him is always 10 m . and the distance between the flag posts is $\mathbf{8} \mathrm{m}$. Find the equation of the race course traced by the man.

Sol:

Given $\mathrm{AA}^{\prime}=2 \mathrm{a}=10 \Rightarrow \mathrm{a}=5$
(Taking flag posts located at A and A^{\prime})
Also given the distance between two fixed points S and $S^{\prime}=8 \mathrm{~m}$.
$\therefore 2 \mathrm{ae}=8 \Rightarrow \mathrm{ae}=4$
$\therefore \mathrm{b}^{2}=\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)$
$\Rightarrow a^{2}-a^{2} e^{2}=25-16=9$
$\therefore \mathrm{b}^{2}=9$
Hence the equation of ellipse is $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
14. Show that the tangents to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at points whose eccentric angles differ by $\pi / 2$ intersect on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$.

Sol.

Equation of the ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Equation of the tangent at $Q(\theta)$ is

$$
\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1
$$

Equation of the tangent at $\mathrm{R}\left(\frac{\pi}{2}+\theta\right)$ is
$\frac{\mathrm{x}}{\mathrm{a}} \cos \left(\frac{\pi}{2}+\theta\right)+\frac{\mathrm{y}}{\mathrm{b}} \sin \left(\frac{\pi}{2}+\theta\right)=1$
$-\frac{\mathrm{x}}{\mathrm{a}} \sin \theta+\frac{\mathrm{y}}{\mathrm{b}} \cos \theta=1$

Suppose $P\left(x_{1}, y_{1}\right)$ is the point of intersection of the tangents at Q and R

$$
\begin{align*}
\therefore \quad & \frac{\mathrm{x}_{1}}{\mathrm{a}} \cos \theta+\frac{\mathrm{y}_{1}}{\mathrm{~b}} \sin \theta=1 \tag{1}\\
& \frac{-\mathrm{x}_{1}}{\mathrm{a}} \sin \theta+\frac{\mathrm{y}_{1}}{\mathrm{~b}} \cos \theta=1 \tag{2}
\end{align*}
$$

Squaring and adding (1) and (2)
$\left(\frac{x_{1}}{a} \cos \theta+\frac{y_{1}}{b} \sin \theta\right)^{2}+\left(\frac{-x_{1}}{a} \sin \theta+\frac{y_{1}}{b} \cos \theta\right)^{2}=1+1$
$\frac{\mathrm{x}_{1}^{2}}{\mathrm{a}^{2}} \cos ^{2} \theta+\frac{\mathrm{y}_{1}^{2}}{\mathrm{~b}^{2}} \sin ^{2} \theta+\frac{2 \mathrm{x}_{1} \mathrm{y}_{1}}{\mathrm{ab}} \cdot \cos \theta \sin \theta$
$+\frac{\mathrm{x}_{1}^{2}}{\mathrm{a}^{2}} \sin ^{2} \theta+\frac{\mathrm{y}_{1}^{2}}{\mathrm{~b}^{2}} \cos ^{2} \theta-\frac{2 \mathrm{x}_{1} \mathrm{y}_{1}}{\mathrm{ab}} \cos \theta \sin \theta=2$
$\frac{x_{1}^{2}}{a^{2}}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+\frac{y_{1}^{2}}{b^{2}}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=2$
$\frac{\mathrm{x}_{1}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}_{1}^{2}}{\mathrm{~b}^{2}}=2$
Locus of $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=2$.
15. Find the equations of the tangents to the hyperbola $x^{2}-4 y^{2}=4$ which are $\begin{array}{ll}\text { (i) Parallel } & \text { (ii) Perpendicular to the line } \mathbf{x}+\mathbf{2 y}=0\end{array}$

Sol. Equation of the hyperbola is $x^{2}-4 y^{2}=4$

$$
\frac{x^{2}}{4}-\frac{y^{2}}{1}=1 \Rightarrow a^{2}=4, b^{2}=1
$$

i) Given line is $\mathbf{x + 2 y}=\mathbf{0}$

Since tangent is parallel to $x+2 y=0$, slope of the tangent is $m=-\frac{1}{2}$

$$
c^{2}=a^{2} m^{2}-b^{2}=4 \cdot \frac{1}{4}-1=1-1=0
$$

$$
c=0
$$

Equation of the parallel tangent is:

$$
\begin{aligned}
& y=m x+c=-\frac{1}{2} x \\
& \Rightarrow 2 y=-x \Rightarrow x+2 y=0
\end{aligned}
$$

ii) The tangent is perpendicular to $x+2 y=0$

Slope of the tangent $m=\frac{-1}{(-1 / 2)}=2$

$$
c^{2}=a^{2} m^{2}-b^{2}=4 \cdot 4-1=15
$$

$$
c= \pm \sqrt{15}
$$

Equation of the perpendicular tangent is

$$
y=2 x \pm \sqrt{15}
$$

16. Find the area enclosed between $y=x^{2}-5 x$ and $y=4-2 x$.

Sol: Equations of the curves are

$$
\begin{align*}
& y=x^{2}-5 x \ldots \ldots \ldots .(1) \tag{1}\\
& y=4-2 x \ldots \ldots . .(2) \\
& x^{2}-5 x=4-2 x, x^{2}-5 x=4-2 x \\
& x^{2}-3 x-4=0 \\
& (x+1)(x-4)=0 x=-1,4
\end{align*}
$$

Required area $\int_{-1}^{4}\left[(4-2 x)-\left(x^{2}-5 x\right)\right] d x$
$=\int_{-1}^{4}\left(4+3 x-x^{2}\right) d x=\left(4 x+\frac{3}{2} x^{2}-\frac{x^{3}}{3}\right)_{-1}^{4}$
$=\left(16+\frac{3}{2} 16-\frac{64}{3}\right)-\left(-4+\frac{3}{2}+\frac{1}{3}\right)$
$=16+24-\frac{64}{3}+4-\frac{3}{2}-\frac{1}{3}$
$=44-\frac{64}{3}-\frac{3}{2}-\frac{1}{3}$
$=\frac{264-128-9-2}{6}=\frac{125}{6}$
17. Solve $2 \frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{2}}$

Sol.Put $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$

$$
\begin{aligned}
& 2 v+2 x \frac{d v}{d x}=v+v^{2} \Rightarrow 2 x \frac{d v}{d x}=v^{2}-v \\
& \frac{d v}{v(v-1)}=2 \frac{d x}{x} \Rightarrow \int\left(\frac{1}{v-1}-\frac{1}{v}\right) d v=2 \int \frac{d x}{x}
\end{aligned}
$$

$\log (v-1)-\log v=2 \log x+\log c$
$\log \frac{\mathrm{v}-1}{\mathrm{v}}=\log \mathrm{cx}^{2} \Rightarrow \frac{\mathrm{v}-1}{\mathrm{v}}=\mathrm{cx}^{2}$
$\frac{\frac{y}{x}-1}{\frac{y}{x}}=c x^{2} \Rightarrow \frac{y-x}{y}=c x^{2}$
Solution is : $(y-x)=c x^{2} y$
18) Find the equation of the circle which intersects each of the following circles orthogonally

$$
x^{2}+y^{2}+2 x+4 y+1=0 ; x^{2}+y^{2}-2 x+6 y-3=0 ; \quad 2 x^{2}+2 y^{2}+6 x+8 y-3=0
$$

Sol. Let equation of circle be
$x^{2}+y^{2}+2 g x+2 f y+c=0$
This circle is orthogonal to
$x^{2}+y^{2}+2 x+4 y+1=0 ; x^{2}+y^{2}-2 x+6 y-3=0 ; x^{2}+y^{2}+3 x+4 y-3 / 2=0$
$2 \mathrm{~g}(1)+2 \mathrm{f}(2)=\mathrm{c}+1$
$2 \mathrm{~g}\left(\frac{3}{2}\right)+2 \mathrm{f}(2)=\mathrm{c}-\frac{3}{2}$
$2 \mathrm{~g}(-1)+2 \mathrm{f}(3)=\mathrm{c}-3$
(iii) - (i)
$-5 \mathrm{~g}+2 \mathrm{f}=\frac{-\mathrm{s}}{2}$ (or) $-10 \mathrm{~g}+4 \mathrm{f}=-3$-(iv)
(iii) - (i)
$-4 g+2 f=-4$
$F-2 g=-2$
Solving (iv) and (v) we get
$\mathrm{F}=-7, \mathrm{~g}=-5 / 2, \mathrm{c}=-34$
Equation of circle be
$x^{2}+y^{2}-5 x-14 y-34=0$
19) Show that the circles $x^{2}+y^{2}-6 x-2 y+1=0 ; x^{2}+y^{2}+2 x-8 y+13=0$ Touch each other. Find the point of contact and the equation of the common tangent at their point of contact.

Sol. Equations of the circles are
$S \equiv x^{2}+y^{2}-6 x-2 y+1=0$
Centers $A(3,1)$, radius $r_{1}=\sqrt{9+1-1}=3$
$S^{\prime} \equiv x^{2}+y^{2}+2 x-8 y+13=0$
Centers $B(-1,4)$, radius $r_{2}=\sqrt{1+16-13}=2$
$\mathrm{AB}=\sqrt{(3+1)^{2}+(1-4)^{2}}=\sqrt{16+9}=\sqrt{25}=5$
$\mathrm{AB}=5=3+2=\mathrm{r}_{1}+\mathrm{r}_{2}$
\therefore The circles touch each other externally. The point of contact P divides AB internally in the ratio $\mathrm{r}_{1}: \mathrm{r}_{2}=3: 2$

Co - ordinates of P are
$\left(\frac{3(-1)+2.3}{5}, \frac{3.4+2.1}{5}\right)$ i.e., $p\left(\frac{3}{5}, \frac{14}{5}\right)$
Equation of the common tangent is
$S_{1}=0$
$\Rightarrow-8 x+6 y-12=0 \Rightarrow 4 x-3 y+6=0$
20. Show that the common tangent to the circle $2 x^{2}+2 y^{2}=a^{2}$ and the parabola $y^{2}=$ 4ax intersect at the focus of the parabola $y^{2}=-4 a x$.

Sol.

Given parabola is $y^{2}=4 a x$
Let $y=m x+\frac{a}{m}$ be the tangent. But this is also the tangent to $2 x^{2}+2 y^{2}=a^{2}$
\Rightarrow Perpendicular distance from centre $(0,0)=$ radius
$\Rightarrow\left|\frac{\mathrm{a} / \mathrm{m}}{\sqrt{\mathrm{m}^{2}+1}}\right|=\frac{\mathrm{a}}{\sqrt{2}} \Rightarrow \frac{\mathrm{a}^{2} / \mathrm{m}^{2}}{\mathrm{~m}^{2}+1}=\frac{\mathrm{a}^{2}}{2}$
$\Rightarrow \frac{2 \mathrm{a}^{2}}{\mathrm{~m}^{2}}=\mathrm{a}^{2}\left(\mathrm{~m}^{2}+1\right)$
$\Rightarrow 2=\mathrm{m}^{4}+\mathrm{m}^{2} \Rightarrow \mathrm{~m}^{4}+\mathrm{m}^{2}-2=0$

$$
\begin{aligned}
& \Rightarrow\left(\mathrm{m}^{2}-1\right)\left(\mathrm{m}^{2}+2\right)=0 \quad\left(\because \mathrm{~m}^{2}+2 \neq 0\right) \\
& \mathrm{m}^{2}-1=0 \Rightarrow \mathrm{~m}= \pm 1
\end{aligned}
$$

Therefore, equations of the tangents are $y=-x-a$ and $y=x+a$.

The point of intersection of these two tangents is $(-a, 0)$ which is the focus of the parabola $y^{2}=-4 a x$.
21. $\int \frac{2 \cos x+3 \sin x}{4 \cos x+5 \sin x} d x$

Sol. Let $2 \cos x+3 \sin x=A(4 \cos x+5 \sin x)+B(-4 \sin x+5 \cos x)$
Equating the coefficient of $\sin x$ and $\cos x$, we get $4 A+5 B=2,5 A-4 B=3$.

A \quad B 1

$\frac{A}{-15-8}=\frac{B}{-10+12}=\frac{1}{-16-25}$
$\mathrm{A}=\frac{23}{41}, \mathrm{~B}=-\frac{2}{41}$
$\int \frac{2 \cos x+3 \sin x}{4 \cos x+5 \sin x} d x=$
$=\frac{23}{41} \int d x-\frac{2}{41} \int \frac{-4 \sin x+5 \cos x}{4 \cos x+5 \sin x} d x$
$=\frac{23}{41} x-\frac{2}{41} \log |4 \cos x+5 \sin x|+C$
22. Obtain the reduction formula for $I_{n}=\int \csc ^{n} x d x$, \boldsymbol{n} being a positive integer, $\mathbf{n} \geq \mathbf{2}$ and deduce the value of $\int \operatorname{cosec}^{5} x d x$.

Sol. $\mathrm{I}_{\mathrm{n}}=\int \csc ^{\mathrm{n}} \mathrm{xdx}=\int \csc ^{\mathrm{n}-2} \mathrm{x} \cdot \csc ^{2} \mathrm{xdx}$

$$
\begin{aligned}
& =\csc ^{n-2} x(-\cot x)+\int \cot x(n-2) \csc ^{n-3} x(\cot x) d x \\
& =-\csc ^{n-2} x \cot x+(n-2) \int \csc ^{n-2} x\left(\csc ^{2} x-1\right) d x \\
& =-\csc ^{n-2} x \cot x+(n-2) I_{n-2}-(n-2) I_{n} \\
& I_{n}(1+n-2)=-\csc ^{n-2} x \cdot \cot x+(n-2) I_{n-2} \\
& I_{n}=\frac{-\csc ^{n-2} x \cot x}{n-1}+\frac{n-2}{n-1} I_{n-2} \\
& n=5 \Rightarrow I_{5}=-\frac{\csc ^{3} x \cdot \cot x}{4}+\frac{3}{4} I_{3} \\
& I_{3}=-\frac{\csc x \cdot \cot x}{2}+\frac{1}{2} I_{1} \\
& I_{1}=\int \csc x d x=\log \left|\tan \frac{x}{2}\right| \\
& I_{3}=-\frac{\csc x \cdot \cot x}{2}+\frac{1}{2} \log \left|\tan \frac{x}{2}\right| \\
& I_{5}=-\frac{\csc ^{3} x \cdot \cot x}{4}-\frac{3}{8} \csc x \cot x+\frac{3}{8} \log \left|\tan \frac{x}{2}\right|+C
\end{aligned}
$$

23. Evaluate $\int_{0}^{\pi / 2} \frac{\sin ^{2} x}{\cos x+\sin x} d x$

Sol,. $\quad I=\int_{0}^{\pi / 2} \frac{\sin ^{2} x}{\cos x+\sin x} d x---1$.

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} \frac{\sin ^{2}\left(\frac{\pi}{2}-x\right)}{\cos \left(\frac{\pi}{2}-x\right)+\sin \left(\frac{\pi}{2}-x\right)} d x \\
& =\int_{0}^{\pi / 2} \frac{\cos ^{2} x d x}{\sin x+\cos x}---2
\end{aligned}
$$

Adding 1.and 2.

$$
\begin{aligned}
& 2 \mathrm{I}=\int_{0}^{\pi / 2} \frac{\sin ^{2} \mathrm{x}+\cos ^{2} \mathrm{x}}{\sin \mathrm{x}+\cos \mathrm{x}} \mathrm{dx} \\
& \Rightarrow \mathrm{I}=\frac{1}{2} \int_{0}^{\pi / 2} \frac{1}{\sin \mathrm{x}+\cos \mathrm{x}} \mathrm{dx} \\
& \text { Consider } \int_{0}^{\pi / 2} \frac{\mathrm{dx}}{\sin \mathrm{x}+\cos \mathrm{x}}
\end{aligned}
$$

Put $\tan (\mathrm{x} / 2)=\mathrm{t}$

$$
\mathrm{dx}=\frac{2 \mathrm{dt}}{1+\mathrm{t}^{2}}, \cos \mathrm{x}=\frac{1-\mathrm{t}^{2}}{1+\mathrm{t}^{2}}, \sin \mathrm{x}=\frac{2 \mathrm{t}}{1+\mathrm{t}^{2}}
$$

$$
\int_{0}^{\pi / 2} \frac{d x}{\sin x+\cos x}=\int_{0}^{1} \frac{2 t d t}{2 t+\left(1-t^{2}\right)}
$$

$$
=2 \int_{0}^{1} \frac{\mathrm{dt}}{(\sqrt{2})^{2}-(\mathrm{t}-1)^{2}}=2 \cdot \frac{1}{2 \sqrt{2}}\left[\log \frac{\sqrt{2}+\mathrm{t}-1}{\sqrt{2}-\mathrm{t}+1}\right]_{0}^{1}
$$

$$
=\frac{1}{\sqrt{2}}\left(\log 1-\log \frac{\sqrt{2}-1}{\sqrt{2}+1}\right)
$$

$$
=\frac{1}{\sqrt{2}} \log \frac{\sqrt{2}+1}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1}
$$

$$
=\frac{1}{\sqrt{2}} \log (\sqrt{2}+1)^{2}=\frac{2}{\sqrt{2}} \log (\sqrt{2}+1)
$$

$$
\mathrm{I}=\frac{1}{\sqrt{2}} \log (\sqrt{2}+1)
$$

24. Solve $\frac{d y}{d x}\left(x^{2} y^{3}+x y\right)=1$

Sol. $\frac{d y}{d x}\left(x^{2} y^{3}+x y\right)=1$ $\frac{d x}{d y}=x y+x^{2} y^{3}$
$\Rightarrow \frac{d x}{d y}-x y=x^{2} y^{3}----(1)$
Which is Bernoulli's equation
Dividing with x^{2},
$\frac{1}{x^{2}} \frac{d x}{d y}-\frac{1}{x} y=y^{3}$
Put $\mathrm{z}=-\frac{1}{\mathrm{x}}$ so that $\frac{\mathrm{dz}}{\mathrm{dy}}=\frac{1}{\mathrm{x}^{2}} \frac{\mathrm{dx}}{\mathrm{dy}}$
$\left.\Rightarrow \frac{d z}{d y}+z \cdot y=y^{3}----2\right)$
Which is linear d.eq.in z
I.F. $=\mathrm{e}^{\int \mathrm{ydy}}=\mathrm{e}^{\mathrm{y}^{2} / 2}$

Sol is z.I.F $=\int$ Q. I.F. $d y$
$\mathrm{z} \cdot \mathrm{e}^{\mathrm{y}^{2} / 2}=\int \mathrm{y}^{3} \mathrm{e}^{\mathrm{y}^{2} / 2} \cdot \mathrm{dy}$
put $\frac{y^{2}}{2}=t \Rightarrow y d y=d t$
$=\int t \cdot d t \cdot e^{t}=e^{t}(t-1)=e^{y^{2} / 2}\left(\frac{y^{2}}{2}-1\right)$
$\mathrm{z} \cdot \mathrm{e}^{\mathrm{y}^{2} / 2}=\mathrm{e}^{\mathrm{y}^{2} / 2}\left(\frac{\mathrm{y}^{2}}{2}-1\right)+\mathrm{c}$
$\mathrm{z}=\frac{\mathrm{y}^{2}}{2}-1+\mathrm{c} \cdot \mathrm{e}^{-\mathrm{y}^{2} / 2} \Rightarrow-\frac{1}{\mathrm{x}}=\frac{\mathrm{y}^{2}}{2}-1+\mathrm{c} \cdot \mathrm{e}^{-\mathrm{y}^{2} / 2}$
$-1=x\left(\frac{y^{2}}{2}-1+c \cdot \mathrm{e}^{-\mathrm{y}^{2} / 2}\right)$

Hence solution is $1+x\left(\frac{y^{2}}{2}-1+c \cdot e^{-y^{2} / 2}\right)=0$

