www.sakshieducation.com

Electro Chemistry Part-III

1.	What is the electrochemical equivalent (in g coulomb ⁻¹) of silver? [M2005]			
	1) 108F	2)108/F	3) 108/96500	4) 96500/108
2.	Which reaction is not feasible?			(CBSE PMT)
	1) 2KI + Br ₂	$2 \rightarrow 2$ KBr + I ₂		
	2) 2KBr + I ₂	$2 \rightarrow 2KI + Br_2$		G
	3) 2KBr + C	$l_2 \rightarrow 2KCl + Br_2$		<u>.</u>
	4) 2H ₂ O +	$2F_2 \rightarrow 4HF + O_2$		0
3.	The standard Potentials at 25 0 C for the half reactions are given against then			
	below $Zn^{2+} + 2$	$e^- \rightarrow Zn; E^0 = -0.762V$, $Mg^{2+} + 2e^- \rightarrow Mg; E^0 = -2$	2.37V (M-2009)
	When Zn dust is added to a solution of MgCl ₂			
	1) Magnesium is precipitated			
	2) Zinc dissolves in the solution			
	3) Zinc chlor	ride is formed		
	4) No reaction	on takes place		
4	For the following cell reaction(E-2009)			
	$Ag Ag^+ AgCl Cl^- Cl_2, Pt;$			
	$\Delta G_f^0 \ (\text{AgCl}) = -109 \text{kJ/mol},$			
$\Delta G_f^0(\mathbf{C}l^-) = -129KJ / mol \text{ and } \Delta G^0 f(Ag^+) = 78KJ / mol \cdot \mathbf{E}^0 \text{ of the cell is}$				
	1) -0.60v	2)0.60v	3)6.0v	4) None
5.	During the charging of a lead-acid storage battery, the cathode reaction is			
				(M-2009)
	1) Formation	n of PbSO ₄	2) Reduction of Pb^{+2} t	to Pb
	3) Formation of PbO_2		4) Oxidation of Pb to Pb^{2t}	

www.sakshieducation.com

6. When 3.86 amperes current are passed through an electrolyte for 50 minutes, 2.4 grams of a divalent metal is deposited. The gram atomic weight of the metal (in grams) is (**M-2007**) 1) 24 2) 12 3) 64 4) 40 7 What is the quantity of electricity (in coulombs) required to deposit all the (E - 2005) silver from 250 ml of 1 M AgNO₃ solution? (Ag = 108) 1) 2412.5 2) 24125 3) 4825.0 4) 48250 **KEY** 7) 2 1)3 2)2 4) 2 5) 2 6) 4 3) 4 www.souce