Co-Ordination Compounds

PREVIOUS COMPETATIVE QUESTIONS

- 1. [Co (NH₃)₅SO₄] Br and [Co (NH₃)₅ Br] SO₄ are a pair of _____ isomers (E 2008)1) Ionisation 2) Ligand 3) Coordination 4) Hydrate In the coordination compound, $K_4[Ni(CN)_4]$ the oxidation state of nickel is 2. (2003-E) 1) + 22) -1 3) 0 (4) + 1One mole of the complex compound $Co(NH_3) \subset Cl_3$ gives 3 moles of ions on 3. dissolution in water. One mole of the same complex reacts with two moles of $AgNO_3$ solution to yield two moles of AgCl(s). The structure of complex is (2003-E) 1) $\left[Co(NH_3)_4 Cl\right]Cl_2.NH_3$ 2) $\left[Co(NH_3)_5 Cl\right]Cl_2$ 3) $\left[Co(NH_3)_3 Cl_3\right]2.NH_3$

 - 4) $\left[Co(NH_3) \right]_1 Cl_2 Cl.NH_3$
- 4. Ammonia forms the complex ion with copper ions in alkaline solutions but not in acidic solutions. What is the reason for it? (2003-E)
 - 1) Copper hydroxide is an amphoteric substance
 - 2) In acidic solutions hydration protects copper ions.
 - 3) In acidic solutions protons coordinate with ammonia molecule forming ions and molecule are not available.
 - 4) In alkaline solutions insoluble is precipitated which is soluble in excess of any

alkali.

5. The coordination number of a central metal atom in a complex is determined by

(2004-E)

- 1) The number of ligands around a metal ion bonded by sigma bonds.
- 2) The number of ligands around a metal ion bonded by -bonds.
- 3) The number of ligands around a metal ion bounded by sigma and pi bonds both.
- 4) The number of only anionic ligands bonded to the metal ion.
- 6. Which one of the following complexes is an outer orbital complex?
 - 1) $\left[Fe(CN)_{6}\right]^{4-}$ 2) $\left[Mn(CN)_{6}\right]^{4-}$ 3) $\left[Co(NH_{3})_{6}\right]^{3+}$ 4) $\left[Ni(NH_{3})_{6}\right]^{2+}$
- 7. Which one of the following has largest number of isomers?

(2004-E)

(2004-E)

٠

- 1) $\left[Ru(NH_3)_4 Cl_2 \right]^+$
- $2) \left\lceil Co(NH_3)_5 Cl \right\rceil^{2+}$
- $3) \left[Ir \left(Ph_3 \right)_2 H \left(CO \right) \right]^{2+}$
- 4) $\left[Co(en)_2 Cl_2\right]^+$

(R=alkyl group, en=ethylenediamine)

- 8. The correct order of magnetic moments (spin only values in Bohr's magneton) among is (2004-E)
 - 1) $[MnCl_4]^{2-} > [CoCl_4]^{2-} > [Fe(CN)_6]^{4-}$
 - 2) $[MnCl_4]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$
 - 3) $\left[Fe(CN)_{6}\right]^{4-} > \left[MnCl_{4}\right]^{2-} > \left[CoCl_{4}\right]^{2-}$
 - 4) $\left[Fe(CN)_{6}\right]^{4-} > \left[CoCl_{4}\right]^{2-} > \left[MnCl_{4}\right]^{2-}$

(Atomic numbers: Mn = 25, Fe = 26, Co = 27)

- 9. Which of the following compounds shows optical isomerism? (2005-E) 1) $\left\lceil Cr(C_2O_4)_3 \right\rceil^{3-}$ 2) $\left\lceil Co(CN)_6 \right\rceil^{3-}$ 3) $\left[Cu(NH_3)_4 \right]^{2+}$ 4) $\left[ZnCl_4 \right]^{2-}$ 10. Which one of the following cyano complexes would exhibit the lowest value of paramagnetic behaviour? (2005-E) 2) $\left[Co(CN)_6 \right]^{3-1}$ 1) $\left[Fe(CN)_{6} \right]^{3-}$ 4) $\left[Mn(CN)_{6} \right]^{3-}$ 3) $\left[Cr(CN)_{6} \right]^{3-}$ 11. Nickel (Z = 28) combines with a uni negative monodentate ligand to form a paramagnetic complex. The number of unpaired electron(s) in the nickel and geometry of this complex ion are, respectively (2006-E) 1) Two, square planar 2) One, tetrahedral 4) One, square planar 3) Two, tetrahedral **12.** In $Fe(CO)_5$, the Fe-C bond possesses (2006-E) 1) σ -Character only 2) π -character only 3) σ Both and π characters 4) Ionic character 13. Which one of the following has a square planar geometry? (2007-E)1) $[CoCl_4]^{2-}$ 2) $[FeCl_4]^{2-}$ 3) [NiCl.] 4) $[PtCl_{4}]^{2-}$ 14. In which of the following octahedral complexes of cobalt (atomic number 27) will the magnitude of Δ_o be the highest? (2008-E)
 - 1) $\left[Co(NH_3)_6\right]^{3+}$ 2) $\left[Co(CN)_6\right]^{3-}$ 3) $\left[Co(C_2O_4)_3\right]^{3-}$ 4) $\left[Co(H_2O)_6\right]^{3+}$

15.	The coordination	n number and	the oxidation stat	e of th	e element E in the			
	complex, where e	(2008-A)						
	1) 6 and 3		2) 6 and 2					
	3) 4 and 2		4) 4 and 3					
16.	Which of the follo	(A-2009)						
	1) [Co (en) (NH ₃)	$[2]^{2+}$	2) [Co (en)	(H ₂ O)	4] ³⁺			
	3) [Co (en) ₂ (NH ₃	3) ₂] ³⁺	4) [Co(Cl)	(NH ₃)5]				
17.	17. Which of the following pairs represents linkage isomers? (A-2009)							
	1) [Pd (P Ph ₃) ₂ (NCS) ₂] and [Pd(P Ph ₃) ₂ (SCN) ₂]							
	2) [Co (NH ₃) ₅ NO ₃] SO ₄ and [Co (NH ₃) ₅ SO ₄] NO ₃							
	3) $[PtCl_2(NH_3)_4]$ Br ₂ and $[PtBr_2(NH_3)_4]$ Cl ₂							
	4) [Cu (NH ₃) ₄] [PtCl ₄] and [Pt (NH ₃) ₄] [CuCl ₄]							
18.	The d-electron	configuration	of $Cr^{2+}, Mn^{2+}, Fe^{2-}$	+ and Co	$^{2+}$ are d^4, d^5, d^6 and d^7			
	respectively. Which one of the following will exhibit minimum paramagnetic							
	behavior?			[CE	SSE AIPMT-2011]			
	1) $[Cr(H_2O)_6]^{2+}$	2) $[Mn(H_2O)_6]$	²⁺ 3) $[Fe(H_2O)_6]^{2+}$	⁺ 4) [<i>Co</i>	$p(H_2O)_6]^{2+}$			
19.	The complex [Pa	$t(Py)(NH_3)BrCl]$	will have many geo	metrica	l isomers?			
		.0.		[CE	BSE AIPMT-2011]			
	1) 2	2) 3	3) 4	4) 0				
20.	Number of i	someric forms	(Constitutional	and	stereoisomer's) for			
	$[Rh(en)_2(NO_2)(SO_2))$	(CN)] ⁺			[DUMET2011]			
	1) 3	2) 6	3) 9	4) 12				
21.	. Crystal field stabilization energy for high spin d^4 octahedral complex is ?							
				[CBS	E AIPMT-2010]			
	1) $-0.6\Delta_0$	2) $-1.8\Delta_0$	3) $-1.6\Delta_0$ +	· p	4) $-1.2\Delta_0$			

Key

1) 1	2) 3	3) 2	4) 3	5) 1	
6) 4	7) 4	8) 1	9) 1	10) 2	
11) 3	12) 3	13) 4	14) 2	15) 1	
16) 3	17)2	18)4	19)2	20) 4	
21) 1					
		4	S		
		5	<u>}</u>		
	5				
S	1				