www.sakshieducation.com

Chemical Kinetics

1.	of a reacti	ion cannot be deter	mined experimentally	y. (M-2004)	
	1) Order	2) Rate	3) Rate constant	4) Molecularity	
2.	For $H_2 + Cl_2 -$	\xrightarrow{x} 2 HCI, rate law	w is given by R=K. T	hen, X is (AIIMS 02)	
	1) Pt	2) Ni	3) hð	4) Water	
3.	If both rate $(\frac{dc}{dt})$ & specific rate (k) have same units, then rate law is				
				[PMT 2003]	
	1) R=K [A] ²	2) R=K[A] ¹ / ₂	3) R=K [A] ⁻²	4) R=K	
	Hint: for zero o	rder both rate & spec	cific rate have same un	nits.	
4.	For $A+B\rightarrow C+D$, when [A] alone is doubled, rate gets doubled. But, when [B] alone is increased by 9 times, rate gets tripled. Then, order of reaction is				
			0	[Karnataka - 2003]	
	1) 3/4	2) 3/2	3) 4/9	4) 2	
5.	Rate law for 2A	A+BC+D from follo	wing data	[Kerala CET 2004]	
	S.No [A] (M)	[B] (M) R	ate (M/s)		
	1 0.01	0.01	2.5		
	2 0.01	0.02	5		
	3 0.03	0.02	45		
	1) r=K[A] ^{1/3} [B] 2) $r=K[A]^2[B]$	3) r=K[A][B] 1/3	4) r=K[a] ^{2/3} [B] ^{1/3}	
6.	Which of the following relation is correct for a first order reaction? (k = rate				
	constant: r = ra	ate of reaction; c = o	conc. of reactant	(M- 2004)	
	1) $k = r \times c^2$	$2) k = r \times c$	3) $k = r / c$	4) k = c / r	
7.	$\frac{dc}{dt}$ of a first or	der reaction depend	ls on	[AFMC 2003]	
	1) Time	2) Concentratio	n 3) Temper	rature 4) All	
8.	Which of the fo	ollowing is correct f	or a first order react	ion?	

www.sakshieducation.com

	(K= rate constant $t_{1/2}$ = half-life)	(E- 2001)			
	1) $t_{1/2} = 0.693 K$ 2) $k.t_{1/2} = \frac{1}{0.693}$	3) k.t _{1/2} = 0.693	4) 6.93 k $t_{1/2} = 1$		
9.	$\mathbf{RCOOR} + \mathbf{H_2O} \xrightarrow{HCI} \mathbf{RCOOH}$	+ ROH is an example	for		
			[Karnataka-2001]		
	1) 2 nd order 2) Unimolecular	3) Pseudo Unimolecu	lar 4) Zero Order		
10.	Order of a reaction is decided by		[KCET 2002]		
	1) Molecularity 2)	Law of Mass Action	G		
	3) Performing experiment 4)	Le chatelier principle	\sim		
11.	$2A \rightarrow B+C$ would be a zero order reaction when rate of reaction (CBSE 2002)				
	1) Is directly proportional [A]				
	2) Is directly proportional $[A]^2$				
	3) Is independent of [A]				
	4) Is independent of [B] & [C]	XV ⁻			
12).	The time taken for the completion	of 90% of a first order	reaction is't' min.		
	What is the time (in sec) taken for the completion of 99% of the reaction?				
			(M-2005)		
	1) 2t 2) t / 30	3) 120t	4) 60t		
13)	A $_{(g)}$ B $_{(g)}$ is a first order reaction. The initial concentration of A is 0.2 mol				
	lit ⁻¹ after 10 minutes the concentration of B is found to be 0.18 mol. lit ⁻¹ The				
	rate constant (in min ⁻¹) for the reaction is		[M - 2008]		
	1) 0.2303 2) 2.303	3) 0.693	4) 0.01		
14)	Consider the following statements.		[PmT2010]		
	i) Increase in concentration of reactant increases the rate of zero order reaction.				
	ii) Rate constant 'k' is equal to collision frequency, A if $E_a = 0$.				
	iii) Rate constant 'k' is equal to collision frequency, A if $E_a = \infty$.				
	iv) Log k vs 1/T is a straight line.				
	Correct statements are				

www.sakshieducation.com

1) i & iv 2) ii & iv 3) iii & iv 4) ii & iii.

15) Which of the following statements for the order of a reaction is incorrect? [CBSE (2011]

1) Order of a reaction is always a whole number.

2) Order can be determined only experimentally.

3) Order is not influenced by stoichiometric coefficient of the reactants.

4) Order of a reaction is sum of power to the concentration terms in rate equation.

Key

1) 4 2) 3 3) 4 4) 2 5) 2 6) 4 7) 4 8) 3 9)3 103) 11)3 12)3 13)1

14)2 15)1

www.sak