www.sakshieducation.com

Biomolecules

1.	Hydrolysis of sucrose with dilute aqueous sulphuric acid yields (EAMCET-2008								
	1) 1:1 D (+)-Glucose; D-(-)- fructose								
	2) 1:2 D -(+)-Glucos	e; D-(-)- fructose							
	3) 1:1 D -(-)-Glucose	e; D-(+)- fructose							
	4) 1:2 D -(-) Glucose	e; D-(+)- fructose							
2.	Which of the follo	owing biomolecules	s acts as specific	catalysts in biological					
	reaction?		÷. C	(EAMCET -2007)					
	1) Carbohydrates	2) Lipids	3) Vitamin	s 4) Enzymes					
3.	A codon has a sequence of, and specifies a particular that is to be incorporate								
	into a. What are?		10	(EAMCET -2009)					
	A	В	c						
	1) 3 bases	amino acid	carbohydrate						
	2) 3 acids	carbohydrate	protein						
	3) 3 bases	protein	amino acid						
	4) 3 bases	amino acid	protein						
4.	. Which of the following does not show mutarotation? (AIPMT 2								
	1) (+) Lactose	2) (+	+) Maltose						
	3) (-) Fructose	4) (-	+) Sucrose						
5.	Which of the follo	owing hormone con	tains iodine?	(AIPMT 2009)					
4	1) Insulin	2) Adrenaline	3) Thyroxine	4) Progesterone					
6.	Which of the follo	owing is an amine h	ormone? (AI	PMT 2008)					
	1) Insulin	2) Oxytocin	3) Thyroxine	4) Progesterone					
7.	A segment of a I	ONA molecule which	h acts as the intro	duction manual for the					
	synthesis of prote	(AIPMT 2009)							

www.sakshieducation.com

www.sakshieducation.com

	1) Nucl	eotide	2) Nucle	eoside	3) Gene	4) Ribose			
8.	RNA an	d DNA are ch	iral molecul	es, their chi	chirality is due to				
	1) Chiral	l bases			2) D-sugar	component			
	3) L-sug	ar component			4) Chiral ph	nosphate ester unit			
9.	In DNA	, the correct c	omplementa	ry bases ar	e	(AIPMT 2008)			
1) Uranyl and Adenine: Cytosine and Guanine									
	2) Adenine and Thymine: Guanine and Cytosine								
	3) Adenine and Thymine: Guanine and Uracyl4) Adenine and Guanine: Thymine and Cytosine								
				<u>Key</u>	N//C)			
	1) 1	2) 4	3) 4	4) 4	5) 3	6) 3			
	7) 3	8) 2	9) 2						
			*						
15									
		CO							