Real Gases

1. Volume occupied by 7 gm of Nitrogen at $27 * \mathrm{C}$ and 750 mm Hg pressure is
(BHU1997)
1) 2.46 litre
2) 4.241 itre
3) 6.24 litre
4) 8.42 litre

Hint: $\mathrm{PV}=(\mathrm{W} / \mathrm{M}) \mathrm{RT}$
2. For an ideal gas the graph between PV/RT and T is
(M-1995)
1)

2)

3)

4)

3. One mole of argon will have least density at

1) STP
2) $0^{\circ} \mathrm{C}, 2 \mathrm{~atm}$
3) $273^{\circ} \mathrm{C}$, 2 atm
4) $273^{\circ} \mathrm{C}, 1 \mathrm{~atm}$

Hint: ' d ' is proportional to p / T
4. What are the conditions under which the relation between ' V ' and ' n ' are plotted

1) At constant P
2) At constant P, V
3) At constant T, V
4) At constant P, T
5. The volume-temperature graphs of a given mass of an ideal gas at constant pressures are shown below. What is the correct order of
pressures?
(2006)
1) $P_{1}>P_{3}>P_{2}$
2) $P_{1}>P_{2}>P_{3}$
3) $P_{2}>P_{3}>P_{1}$
4) $P_{2}>P_{1}>P_{3}$

6. At standard pressure and temperature conditions the density of a gas in g.lit ${ }^{-1}$, whose molecular weight is 45
1) 2
2) 22.4
3) 11.2
4) 1000

Hint: at STP, $\mathrm{d}=\mathrm{GMW} / 22.4$
7. The volume of 2.8 g of carbon monoxide at $27^{\circ} \mathrm{C}$ and 0.821 atm pressure is ($\mathrm{R}=0.0821$ lit-atm mol ${ }^{-1} \mathrm{~K}^{-1}$)

1) 1.5 lit
2) 0.3 lit
3) 3 lit
4) 30 lit
8. 7.5 g of a gas occupies a volume of 5.6 lit at NTP. The gas is
1) CO_{2}
2) CH_{4}
3) NO
4) SO_{2}
9. What is the density (in g lit ${ }^{\mathbf{- 1}}$) of CO_{2} at $\mathbf{4 0 0} \mathrm{K}$ and exerting a pressure of $0.0821 \mathrm{~atm}\left(\mathrm{R}=0.0821\right.$ lit $\left.\mathrm{atm} \mathrm{mol}^{-1} \mathrm{k}^{-1}\right)$
(2002)
1) 0.01
2) 0.11
3) 2.5
4) 44
10. The volume of a gas measured at $27^{\circ} \mathrm{C}$ and 1 atm pressure is 10 litres. To reduce the volume to 5 litres at 1 atm pressure, the temperature required is
(AFMC)
1) 75 K
2) 150 K
3) 225 K
4) 300 K
11. The density of a gas ' S ' at 2 atm and $27^{0} \mathrm{C}$ is $1.3 \mathrm{gm} /$ lit. Then the gas ' S ' may be
1) CH_{4}
2) O_{2}
3) SO_{2}
4) CO_{2}

Hint: $\mathrm{PM}=\mathrm{dRT}$
12. The weight of 112 ml of oxygen at $S T P$, on liquifaction would be (DPMT)

1) 0.32 g
2) 0.64 g
3) 0.16 g
4) 0.96 g
13. A gaseous mixture of three gases A, B and C has a pressure of 10 atm . The total number of moles of all the gases is 10 . The partial pressure of A and B are 3 and 1 atm respectively. If C has a molecular weight of 2 , what is the weight of C in grams present in the mixture?
1) 6
2) 3
3) 12
4) 8
14. The total pressure of a mixture of 6.4 grams of oxygen and 5.6 grams of nitrogen present in a 2 lit vessel is $\mathbf{1 2 0 0} \mathbf{m m}$. What is the partial pressure of nitrogen in $\mathbf{m m}$? (2000)
1) 1200
2) 600
3) 900
4) 200
15. At $27^{0} \mathrm{C}$, a closed vessel contains a mixture of equal weights of helium $(\operatorname{mol} . \mathbf{w t}=4)$, methane $(m o l . w t=16)$ and sulphur dioxide (mol $\mathbf{w t}=64)$. The pressure exerted by the mixture is $\mathbf{2 1 0} \mathbf{~ m m}$. If the partial pressure of helium methane and sulphurdioxide are P_{1}, P_{2} and P_{3} respectively, which one of the following is correct? (E-2002)
1) $P_{3}>P_{2}>P_{1}$
2) $P_{1}>P_{2}>P_{3}$
3) $\mathrm{P}_{1}>\mathrm{P}_{3}>\mathrm{P}_{2}$
4) $P_{2}>P_{3}>P_{1}$
16. x gm of water is mixed with 69 gm of ethanol. The mole fraction of ethanol in the resulting solution is 0.6 . What is the value of ' x ' in gm
(M-2004)
1) 54
2) 36
3) 180
4) 18
17. A and B are ideal gases. The molecular weights of A and B are in the ratio of 1: 4. The pressure of a gas mixture containing equal weights of A and B is P atm. What is the partial pressure (in atm) of B in the mixture?
(E-2005)
1) $P / 5$
2) $P / 2$
3) $P / 2.5$
4) $3 P / 4$
18. Gas equation $P V=n R T$ is obeyed by
(BHU2000)
1) Isothermal process only
2) Adiabatic Process Only
3) Both 1 and 2
4) None
19. The molecular weight of a gas which diffuses four times faster than O_{2} is
(AFMC2002)
1) 2
2) 4
3) 8
4) 16
20. The rms speed of Hydrogen is $\sqrt{7}$ times the rms speed nitrozen. If Tis the temprature of the gas, then
1) $T_{H_{2}}=T_{N_{2}} \quad$ 2) $_{H_{2}}>T_{N_{2}}$
2) $T_{H_{2}}<T_{N_{2}}$
3) None

KEY
1)3
2) 1
3) 4
4) 4
5) 1
6) 2
7) 1
8) 3
9) 3
10) 2
11) 2
12) 1
13) 3
14) 2
15) 2
16) 4
17) 1
18)3
19)2
20)3

