www.sakshieducation.com

<u>Chemical Equilibrium -1</u>

- The equilibrium constant for the reaction N₂+O₂ → 2NO is K₁ and for the reaction 2NO+O₂ → 2NO₂ is K₂. The equilibrium constant K for the reaction NO₂ → 1/2N₂+O₂ at same temperature is

 [AIPMT2011]
 1/K₁ K₂
 2) 1/2 K₁ K₂
 3) 1/4 K₁ K₂
 4) [1/K₁ K₂]^{1/2}
 Ans: 4

 The value of ΔH for the reaction X₂(g) +4Y₂ (g) → 2XY₄ (g) is less than zero, formation of is favoured by

 [AIPMT2011]
 High pressure and low temperature
 - 2) High pressure and high temperature
 - 3) Low pressure and low temperature
 - 4) Low pressure and high temperature

Ans: 1

2) For the reaction AB(g) → A(g) +B(g), AB is 33% dissociated at a total pressure of P. Therefore, P is related to K_P as [AMU2010]
1) P=K_P 2) P=3 K_P 3) P=4 K_P 4) P=8K_P
Ans: 4

4) At 3000K, the equilibrium pressures of CO₂, CO and CO₂ are 0.6, 0.4 and 0.2

atm respectively. K for the reaction $2CO_{2}(g) \rightleftharpoons 2CO(g) + O_{2}(g)$ is [BHU2010]

www.sakshieducation.com

1)	0.088	2) 0.0533	3) 0.133	4) 0.177
----	-------	-----------	----------	----------

Ans: 1

5) In which of the following K_C and K_P are not equal?

[PMT2010]

- 1) 2NO (g) \rightleftharpoons N₂ (g) + O₂ (g) 2) SO₂(g) + NO₂(g) \rightleftharpoons SO₃(g) + NO_(g)
- 3) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ 4) $2C(s) + O_2(g) \rightleftharpoons 2CO(g)$

Ans: 4

6) K_1 and K_2 are the equilibrium constants of the two reactions, given below

i. $\frac{1}{2}$ N₂ + $\frac{3}{2}$ H₂ \implies NH₃

ii. $N_2+3H_2 \longrightarrow 2NH_3$. Therefore K and K* are related as [PMT2009]

1)
$$K_1 = K_2^2$$
 2) $K_1 = K_2^{1/2}$ 3) $K_1 = 2K_2$ 4) $K_1 = K_2$

2) 8

Ans: 2

- 7. $A_{(g)} + 3B_{(g)} \leftrightarrow 4C_{(g)}$ Initial concentration of A is equal to that of B. The equilibrium concentration of A and C are equal. K_c is equal to,
 - [Kerala -2005(E)] 4) 80

Ans: 2

1) 0.08

 8. In a 500 ml flask, the degree of dissociation of PCl₅ at equilibrium is 40% and the initial amount is 5 moles. The value of equilibrium constant in mole lit⁻¹ for the decomposition of PCl₅ is (E-2008)

3) 1/8

1) 3.33 2) 2.66 3) 5.32 4) 4.66

www.sakshieducation.com

Ans: 2

9. What is the effect of a ten-fold increase in pressure on K_p in the reaction at

equilibrium $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$? (M-2010)2) A ten-fold decrease 1) A ten-fold increase 4) Equal to K_{C} 3) No change Ans: 3 10. In the reaction $2SO_3 (g) \rightleftharpoons 2SO_2 (g) + O_2 (g)$, $SO_3 (g)$ is 50% dissociated at 27⁰C when the equilibrium pressure is 0.5 atm. Hence partial pressure of SO_{3(g)} at Equilibrium is (M - 2007) 3) 0.2 atm 4) 0.1 atm 1) 0.5 atm 2) 0.3 atm Ans: 3 www.sous