Hydrogen Bond

1. The states of hybridization of boron and oxygen atoms in boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$ are respectively
(A) sp^{3} and sp^{2}
(B) sp^{2} and sp^{3}
(C) sp^{2} and sp^{2}
(D) sp^{3} and sp^{3}
2. The correct order of the hybridization of the central atom in the following species $\mathrm{NH}_{3},\left[\mathrm{PtCl}_{4}\right]^{\mathbf{2 -}}, \mathrm{PCl}_{5}$ and BCl_{3}
(A) $\mathrm{dsp}^{2}, \mathrm{dsp}^{3}, \mathrm{sp}^{2}$ and sp^{3}
(B) $\mathrm{sp}^{3}, \mathrm{dsp}^{2}, \mathrm{dsp}^{3}, \mathrm{sp}^{2}$
(C) $\mathrm{dsp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}^{3}, \mathrm{dsp}^{3}$
(D) $\mathrm{dsp}^{2}, \mathrm{sp}^{3}, \mathrm{sp}^{2}, \mathrm{dsp}^{3}$
3. Specify the coordination geometry around and hybridization of \mathbf{N} and B atoms in a 1: 1 complex of BF_{3} and NH_{3}
(A) $\mathrm{N}:$ tetrahedral, sp^{3}; B: tetrahedral, sp^{3}
(B) N : pyramidal, sp^{3}; B: pyramidal, sp^{3}
(C) $\mathrm{N}:$ pyramidal, $\mathrm{sp}^{3} ; \mathrm{B}:$ planar, sp^{2}
(D) $\mathrm{N}:$ pyramidal, sp^{3} : tetrahedral, sp^{3}
4. The linear structure is assumed by:
(A) SnCl_{2}
(B) NH_{3}
(C) CO_{2}
(D) NO_{2}
5. Which of the following statements are correct?
(A) The bond angle of NCl_{3} is greater than that of NH_{3}.
(B) The bond angle in PH_{3} is greater than that of PF_{3}.
(C) And are isostructural
(D) It is not necessary that in TBP structure the lone pairs always would occupy the equatorial positions.
6. The geometry of $\mathbf{H}_{2} \mathrm{~S}$ and its dipole moment are
[1999]
(A) Angular and non-zero
(B) Angular and zero
(C) Linear and non-zero
(D) Linear and zero
7. The bond order in NO is 2.5 while that in NO^{+}is 3 . Which of the following statements is true for these two species?
(A) Bond length in NO^{+}is equal to that in NO
(B) Bond length in NO is greater than in NO^{+}
(C) Bond length in NO^{+}is greater than in NO
(D) Bond length is unpredictable
8. Which of the following molecules/ions does not contain unpaired electrons?
(A) $\mathrm{N}_{2}{ }^{+}$
(B) O_{2}
(C) $\mathrm{O}_{2}{ }^{2-}$
(D) B_{2}
9. The cyanide ion, CN^{-}and N_{2} are isoelectronic. But in contrast to CN^{-}, \mathbf{N}_{2} is chemically inert, because of
(A) Low bond energy
(B) Absence of bond polarity
(C) Unsymmetrical electron distribution
(D) Presence of more number of electrons in bonding orbitals
10. Among $\mathrm{KO}_{2}, \mathrm{AlO}_{2}{ }^{-}, \mathrm{BaO}_{2}$ and $\mathrm{NO}_{2}{ }^{+}$, unpaired electron is present in
(A) $\mathrm{NO}_{2}{ }^{+}$and BaO_{2}
(B) KO_{2} and $\mathrm{AlO}_{2}{ }^{-}$
(C) KO_{2} only
(D) BaO_{2} only
11. The correct order of increasing $\mathrm{C}-\mathrm{O}$ bond length of $\mathrm{CO}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{CO}_{2}$ is
[1999]
a) $\mathrm{CO}_{3}{ }^{2-}<\mathrm{CO}_{2}<\mathrm{CO}$
b) $\mathrm{CO}_{2}<\mathrm{CO}_{3}{ }^{2-}<\mathrm{CO}$
c) $\mathrm{CO} \leqslant \mathrm{CO}_{3}{ }^{2-}<\mathrm{CO}_{2}$
d) $\mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}{ }^{2-}$
12. The common features among the species $\mathrm{CN}^{-}, \mathrm{CO}$ and NO^{+}are
[2001]
a) Bond order three and isoelectronic
b) Bond order three and weak field ligands
c) Bond order two and π-acceptors
d) Isoelectronic and weak field ligands
13. Which of the following are isoelectronic and isosteructural? $\mathrm{NO}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}$, SO_{3}
[2003]
a) $\mathrm{NO}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}$
b) $\mathrm{SO}_{3}, \mathrm{NO}_{3}-$
c) $\mathrm{ClO}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}$
d) $\mathrm{CO}_{3}{ }^{2-}, \mathrm{SO}_{3}$
14. Among the following, the paramagnetic compound is
[2007]
a) $\mathrm{Na}_{2} \mathrm{O}_{2}$
b) O_{3}
c) $\mathrm{N}_{2} \mathrm{O}$
d) KO_{2}
15. The species having bond order different from that in CO is
[2007]
a) NO^{-}
b) NO^{+}
c) CN^{-}
d) N_{2}
16. Planar structure is shown by
[AIIMS2007]
a) $\mathrm{CO}_{3}{ }^{2-}$
b) BCl_{3}
c) $\mathrm{N}\left(\mathrm{SiH}_{3}\right)_{3}$
d)All
17. Which of the following does not have a co -ordinate covalent bond?
[CPMT2008]
a) SO_{2}
b) HNO_{3}
c) $\mathrm{H}_{2} \mathrm{SO}_{3}$
d) HNO_{2}
18. In which of the following, the central atob does not have Sp 3 hybridisation?
[AIPMT2010]
a. CH_{4}
b. SF_{4}
c. $\mathrm{BF}_{4}{ }^{-}$
d. $\mathrm{NH}_{4}{ }^{+}$
19. Which of the following is Linear?
[AFMC2008]
a. XeF_{4}
b. XeF_{2}
c. SO_{2}
d. ClF_{3}
20. Among the following molecules, $\mathrm{SO}_{2}, \mathrm{ClF}_{3}, \mathrm{XeF}_{4}, \mathrm{SF}_{4}$ Which of the following does not describe the shape of any of these is
[AIPMT2011]
a. Bent
b. Trigonal bi pyramidal
c. See-saw
d. T-shape
21. The shape of NH_{2} molecule is
(CPMT 2000: AIIMS2001)
a. Pyramidal
b. Linear
c. Tetrahedral
d. Trigonal
22. The shape of $I F_{5}$ is
(CPMT2001)
a. Pentagonal bipyramidal
b. Square pyramidal
c. Octahedral
d. Trigonal planar
23. The As F_{5} molecule is trigonal pyramidal The hybrid orbital used by the $\mathbf{A s}$-atom for bonding are
(AIIMS2000)
a. $d_{x^{2}-y^{2}}, s, p_{y,} p_{z}$
b. $s, p_{x}, p_{y}, p_{z,} d_{z^{2}}$
c. $d_{x^{2}-y^{2}}, d_{z^{2}}, s, p_{x}, p_{y}$
d. $d_{x y}, s, p_{x}, p_{y}, p_{z}$
24. Ion which of the following the angle between the two covalent bonds is greatest?
[JIPMER 2001]
a. $\mathrm{H}_{2} \mathrm{O}$
b. NH_{3}
c. CH_{4}
d. CO_{2}
25. $B C l_{3}$ is a planar molecule because its hybridization is:
[BHU 2000]
a. $S P^{3}$
b. $S p^{3} d$
c. $S p^{2}$
d. Sp
26. The ratio of π and σ bonds in benzene is
[BHU 2000]
a. 1:3
b. 1:4
c. 1:6
d. 1:9
27. Which of the following molecules will form a linear polymeric structure due to hydrogen bonding?
[AIPMT 2000]
a. NH_{3}
b. $\mathrm{H}_{2} \mathrm{O}$
c. HCl
d. $H F$
28. Which of the following is not a paramagnetic?
[AIPMT 2000]
a. NO
b. N_{2}^{+}
c. CO
d. O_{2}^{-}
29. Which of the following two are isostructural? [AIPMT 2001][BHU 2007]
a. $X e F_{2}, I F_{2}^{-}$
b. $\mathrm{NH}_{3}, B F_{3}$
c. $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}^{2-}$
d. $P C l_{5}, I C I_{5}$
30. In which of the following bond angle is maximum? [AIPMT 2001]
a. NH_{3}
b. NH_{4}^{+}
c. PCl_{3}
d. SCl_{2}
31. Which of the following has $p \pi-d \pi$ bonding?
[AIPMT 2002]
a. No_{3}^{-}
b. So_{3}^{2-}
c. Bo_{3}^{3-}
d. Co_{3}^{2-}
32. The number of σ and π-bonds present in 1-buten-3-yne are
[AFMC 2000]
a. 7σ and 5π
b. 6σ and 44π
c. 6σ and 6π
d. 7σ and 3π
33. Both BF_{3} and NF_{3} are covalent but $\mathrm{BF} F_{3}$ molecule is non-polar while $N F_{3}$ is polar because
[AFMC 2001]
a. Boron is a metal while nitrogen is a gas
b. $B F_{3}$ is a planar but $N F_{3}$ is pyramidal
c. Atomic size of boron is smaller than nitrogen
d. B-F bond has no dipole moment while N-F bond has dipole moment
34. NH_{3} is added to BF_{3} by
[AFMC 2001]
a. Ionic Bond
b. Covalent bond
c. Dative bond
d. Molecular bond
35. Ionic bond formation between Aand B can take place only if
[AFMC 2001]
a. Ionization energy of A is less and electron affinity of B is more.
b. If ionisation energy of both A and B are more.
c. Both have equal electron affinities.
d. None of the above.
36. Ethane molecule contains
[AMU 2000]
a. One π-bond and five σ-bonds
b. Two π-bonds only
c. Two π-bonds and four σ-bonds
d. Four π-bonds and σ-bonds
37. Which of the following species is diamagnetics? [AMU 2001]
a. O_{2}
b. O_{2}^{2-}
c. O_{2}^{-}
d. O_{2}^{+}
38. MO configuration of He_{2}^{-}is
[AMU 2001]
a. $\sigma 1 s^{2} \sigma 1 s^{2} \sigma 2 s^{1}$
b. $\sigma 1 s^{2} \sigma 1 s^{2} \sigma 2 s^{2}$
c. $\sigma 1 s^{2} \sigma 1 s^{1} \sigma 2 s^{2}$
d. $\sigma 1 s^{2} \sigma 1 s^{1} \sigma 2 s^{1}$
39. The orbitals of same energy level providing the most efficient overlapping are
[PMT (HARYANA) 2000]
a. sp -sp
b. $s p^{2}-s p^{2}$
c. $s p^{3}-s p^{3}$
d. All of the these
40. What is the correct sequence of bond order?
[PMT (HARYANA) 2000; BHU 2004]
a. $O_{2}^{+}>O_{2}>O_{2}^{-}$
b. $O_{2}^{-}>O_{2}^{+}>\mathrm{O}_{2}$
c. $O_{2}^{-}>O_{2}^{+}>O_{2}$
d. $\mathrm{O}_{2}>\mathrm{O}_{2}^{+}>\mathrm{O}_{2}^{+}$
41. The number of $S P^{3}$ - hybrid carbons in 2- butyne is
[PMT (HARYANA) 2001]
a. 1
b. 2
c. 3
d. 4
42. Anti bonding molecular orbital is formed by
(DPMT 2000)
a. Addition of wave function of atomic orbitals
b. Subtraction of wav e functions of atomic orbitals.
c. Multiplication of wave function of atomic orbitals
d. None of the above
43. In Lewis formula of O_{3} there are
(DPMT
2000)

a. $2 \sigma, 1 \pi, 4$ lone pairs
b. $1^{\sigma}, 2 \pi, 1$ lone pairs
c. $2^{\sigma}, 2 \pi, 3$ lone pairs
d. $2 \sigma, 1 \pi, 6$ lone pairs
44. The number possible resonating structures for CO_{3}^{2-} ion is
[PMT (MP) 2000]
a. 9
b. 6
c. 3
d. 2
45. The correct order of bond angles in the molecule $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CH}_{4}$ and CO_{2} is
[PMT (KERALA) 2001]
a. $\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}>\mathrm{CH}_{4}>\mathrm{CO}_{2}$
b. $\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{CO}_{2}<\mathrm{CH}_{4}$
C. $\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}<\mathrm{CH}_{4}>\mathrm{CO}_{2}$
d. $\mathrm{CO}_{2}>\mathrm{CH}_{4}>\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}$
46. In $O F_{2}$, number of bond pairs and lone pairs of electrons are respectively
[DPMT 2002]
a. 2, 6
b. 2,8
c. 2,10
d. 2,9
47. Which of the following does not contain coordinate bond?
[PMT (RAJASTHAN) 2002]
a. $B H_{4}^{-}$
b. NH_{4}^{+}
c. CO_{3}^{2-}
d. $\mathrm{H}_{3} \mathrm{O}^{+}$
48. Which of the following bonds requires the largest amount of energy to dissociate into the constituent atoms?
[PMT (KERALA) 2003]
a. $\mathrm{H}-\mathrm{H}$ bond in H_{2}
b. $\mathrm{C}-\mathrm{H}$ Bond in CH_{4}
c. $N \equiv N$ bond in N_{2}
d. $O=O$ Bond in O_{2}
49. The ONO angle is maximum in
[AIIMS 2004]
a. NO_{3}
b. NO_{2}^{-}
c. NO_{2}
d. NO_{2}^{+}
50. Which statement is true for N_{3}^{-}ion?
[AIIMS 2004]
a. It has a non - linear structure
b. It is called pseudohalogen
c. The average oxidation state of N in the ion is -1
d. It is isoelectronic with NO_{2}
51. Among the following, the pair in which two species are not isostructural is
a. SiF_{4} and SF_{4}
b. IO_{3}^{-}and XeO_{3}
c. BH_{4}^{-}and NH_{4}^{+}
d. $P F_{6}^{-}$and $S F_{6}$
52. In regular octahedral molecule $M X_{6}$, the number of $X M X$ bonds at 180° is
[AIPMT 2004]
a. 3
b. 2
c. 6
d. 4
53. $\mathrm{H}_{2} \mathrm{O}$ is dipolar whereas $\mathrm{Be} F_{2}$ is not, It is because
[AIPMT 2004]
a. electro negativity of F is greater than that of O
b. $\mathrm{H}_{2} \mathrm{O}$ involves H - bonding whereas BeF_{2} is a discrete unit
c. $\mathrm{H}_{2} \mathrm{O}$ is linear and BeF_{2} is angular
d. $\mathrm{H}_{2} \mathrm{O}$ is angular and BeF_{2} is linear
54. In BrF_{3} molecule, the lone pairs occupy equatorial position around Br atom to minimize.
a. Lone Pair - bond pair repulsions only
b. Lone Pair - lone pair repulsions only[AIPMT 2004]
c. Bond Pair - bond pair repulsions only
d. Lone Pair - bond pair as well as lone pair - lone pair repulsions
55. Which hybridizations has sulphur in SO_{2} ? [PMT (HARYANA) 2003]
a. $s p^{2}$
b. $s p^{3} d^{2}$
c. $s p^{3}$
d. $s p$
56. The hybridizations of nitrogen in $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$and NH_{4}^{+}are respectively [PMT(HARYANA)2005]
a. $s p, s p^{3}$ and $s p^{2}$
b. $s p, s p^{2}$ and $s p^{3}$
c. $s p^{2}, s p$ and $s p^{3}$
d. $s p^{2} s p^{3}$ and $s p$
57. The correct sequence of hybridization of methane, ethane and acetylene is
[CPMT 2003]
a. $s p^{2}, s p^{3}, s p$
b. $s p, s p^{2}, s p^{3}$
c. $s p^{3}, s p^{2}, s p$
d. $s p^{3}, s p, s p^{2}$
58. Hybridizations present in CIF_{3} is
[CPMT 2005]
a. $s^{2} d^{2}$
b. $s p^{3}$
c. $d s p^{2}$
d. $s p^{3} d$
59. Electron deficient molecule is
[CPMT 2005]
a. CCI_{4}
b. PCl_{5}
c. $B F_{3}$
d. $S F_{6}$
60. The number of σ and π bonds in Allyl Isocyanide are [$\mathrm{CH}_{2}=\mathrm{CH}_{-} \mathrm{CH}_{2}$: NC]
[CPMT 2006]
a. $9 \sigma, 3 \pi$
b. $9 \sigma, 9 \pi$
c. $3 \sigma, 4 \pi$
d. $5 \sigma, 7 \pi$

KEY

$\begin{array}{llllllllllll}\text { 1) } \mathbf{a} & \text { 2) } b & \text { 3) } \mathbf{a} & \text { 4) } \mathbf{c} & \text { 5) } c & \text { 6) } a & \text { 7) } d & \text { 8) } \mathbf{c} & \text { 9) } b & \text { 10) } \mathbf{c}\end{array}$
11) d
12) a
13) a 14) d
15) a 16) d 17) d
18) a
19) $b \quad 20) b$
21) a
22) b
23) b 24) d
25) c
26) b 27) d
28) \mathbf{c}
29) a 30) b
31) b
32) d
33) b-34) c
35) a 36) a 37) b
38) a 39) a 40) a
41) 2
42) b
43) d 44) c
45) d
46) b
47) \mathbf{c}
48) c 49) d 50) b

