Hydrogen Bond

1.	The states of hybridization of boron	and oxygen atom	ms in boric acid		
	(H ₃ BO ₃) are respectively				
	(A) sp^3 and sp^2 (B) sp^2 and sp^3				
	(C) sp^2 and sp^2 (D) sp^3 and sp^3				
2.	The correct order of the hybridization of	of the central ator	m in the		
	following species NH ₃ , [PtCl ₄] ²⁻ , PCl ₅	and BCl ₃	[2001]		
	(A) dsp^2 , dsp^3 , sp^2 and sp^3	(B) sp^3 , dsp^2 ,	dsp^3 , sp^2		
	(C) dsp^2 , sp^2 , sp^3 , dsp^3	(B) sp^3 , dsp^2 , (D) dsp^2 , sp^3 ,	sp^2 , dsp^3		
3.	Specify the coordination geometry aro	und and hybridiz	ation of N and B		
	atoms in a 1: 1 complex of BF ₃ and NH ₃				
	(A) N: tetrahedral, sp ³ ; B: tetrahedral, sp ³				
	(B) N: pyramidal, sp^3 ; B: pyramidal, sp^3				
	(C) N: pyramidal, sp ³ ; B: planar, sp ²				
	(D) N: pyramidal, sp ³ : tetrahedral, sp ³				
4.	The linear structure is assumed by:		[1991]		
	(A) SnCl ₂ (B) NH ₃	(C) CO ₂	(D) NO ₂		
5.	Which of the following statements are o	correct?			
	(A) The bond angle of NCl ₃ is greater that	nn that of NH_3 .			
	(B) The bond angle in PH ₃ is greater than	that of PF ₃ .			
1	(C) And are isostructural				
	(D) It is not necessary that in TBP stru	ucture the lone pa	airs always would		
	occupy the equatorial positions.				

5.	The geometry of H ₂ S and its dipole moment are					
	(A) Angular and non-ze	ero	(B) Angular and a	zero		
	(C) Linear and non-zero)	(D) Linear and ze	ero		
7.	The bond order in N	NO is 2.5 while tha	t in NO ⁺ is 3.	Which of the		
	following statements is	s true for these two s	pecies?			
	(A) Bond length in NO	⁺ is equal to that in N	0			
	(B) Bond length in NO	is greater than in NO	H	⁶ 0,		
	(C) Bond length in NO	is greater than in NC)			
	(D) Bond length is unpr	redictable				
8.	Which of the follow	ving molecules/ions	does not con	tain unpaired		
	electrons?					
	(A) N_2^+	B) O ₂	(C) O_2^{2-}	(D) B ₂		
9.	The cyanide ion, CN-	and N ₂ are isoelect	tronic. But in co	ntrast to CN ⁻ ,		
	N_2 is chemically inert,	because of		[1992]		
	(A) Low bond energy					
	(B) Absence of bond polarity					
	(C) Unsymmetrical elec	etron distribution				
	(D) Presence of more n	umber of electrons in	bonding orbitals			
10.	Among KO ₂ , AlO ₂ ⁻ ,	${ m BaO_2}$ and ${ m NO_2}^+$, un	paired electron i	s present in		
	M.			[1997]		
	(A) NO_2^+ and BaO_2		(B) KO ₂ and AlC) ₂ ⁻		
1	(C) KO ₂ only		(D) BaO ₂ only			

11.	The correct	t order o	f increasing	; C —	O bond le	ength	of CO,	, CO ₃	3 ² –, CO) ₂ is
									[1999	•]]
	a) CO ₃ ²⁻ <	CO ₂ < 0	CO		b)	CO ₂ <	CO ₃ ²	?- <c< td=""><td>CO</td><td></td></c<>	CO	
	c) CO <co< td=""><td>3^{2-} < CC</td><td>O_2</td><td></td><td>d)</td><td>CQ< 0</td><td>CO₂ <</td><td>CO_3^2</td><td>2–</td><td></td></co<>	3^{2-} < CC	O_2		d)	CQ< 0	CO ₂ <	CO_3^2	2–	
12.	The commo	n feature	s among the	speci	ies CN ⁻ , (CO and	d NO ⁺	are	[2001	
	a) Bond ord	ler three a	and isoelectre	onic						
	b) Bond ord	ler three a	and weak fie	ld lig	ands				•	
	c) Bond ord	ler two ar	nd π-accepto	rs				,		
	d) Isoelectro	onic and	weak field li	gands	S					
13.	Which of th					sosteri	ictural	l? NC) ₂ –, C(),2-
	, SO ₃		8			9				003]
	a) NO ₃ ⁻ , C	0_3^{2-}	b) SO ₃ , N	03-	c) ClO ₂	₃ –, CO	3 ²⁻	d) CO	0 ₃ ^{2–} , S	O ₃
14.	Among the	followin	g, the parai	nagn	etic comp	oound	is		[2007	']
	a) Na ₂ O ₂		b) O ₃	0	c)	N ₂ O			d) KO	\mathcal{O}_2
15.	The species	having	bond order	diffe	rent fron	ı that i	in CO	is	[2007	']
	a) NO-		b) NO ⁺		c)	CN-			d) N ₂)
16.]	Planar struc	ture is sl	own by					[A]	IIMS2	007]
	a) CO ₃ ² -	5	b) BCl ₃		c)	N(SiH	3)3		d)All	
17. `	Which of the	followir	ng does not l	have	a co –ord	linate	covale	nt bo	nd?	
	1							[CPI	MT200	8]
	a) SO ₂		b) H N O	3	c)	H ₂ S0	03		d) HN	O_2
18.	In which	of the	following,	the	central	atob	does	not	have	Sp3
	hybridisati	on?					[AIPN	MT201	0]
	a. CH ₄		b. SF ₄		c. BF	4		d. I	NH ₄ +	

19.	[AFMC2008]			
	a. XeF ₄	b. XeF ₂	c. SO ₂	d. ClF ₃
20.	Among the follo	owing molecules, SO ₂ ,	ClF ₃ , XeF ₄ , S	F ₄ Which of the
	following does n	ot describe the shape of	any of these is	[AIPMT2011]
	a. Bent	b. Trigonal bi pyramida	al c. See-saw	d. T-shape
21.	The shape of A	VH ₂ molecule is	(CPMT 20	00: AIIMS2001)
	a. Pyramidal	b. Linear	c. Tetrahedral	d. Trigonal
22.	The shape of I	F_5 is		(CPMT2001)
	a. Pentagonal bi	ipyramidal	b. Square pyran	nidal
	c. Octahedral		d. Trigonal plan	nar
23.	The As F_5 mole	ecule is trigonal pyramic	dal The hybrid o	rbital used
	by the As-atom	n for bonding are	(A)	IIMS2000)
	a. $d_{x^2-y^2}$, s , p_{y} , p_z	•.0)	b. $s, p_x, p_y, p_{z,d_{z^2}}$	
	c. $d_{x^2-y^2}, d_{z^2}, s, p$	$_{x},p_{y}$	d. d_{xy} , s , p_x , p_y , p_z	;
24.	Ion which of th	ne following the angle be	etween the two co	ovalent bonds is
	greatest?			[JIPMER 2001]
	a. <i>H</i> ₂ <i>O</i>	b. NH_3	c. <i>CH</i> ₄	d. <i>CO</i> ₂
25.	BCl_3 is a plana	r molecule because its h	ybridization is:	[BHU 2000]
	a. SP^3	b. Sp^3d	c. Sp^2	d. Sp
26.	The ratio of π	and σ bonds in benzer	ne is	[BHU 2000]
1	a. 1:3	b. 1:4	c. 1:6	d. 1:9
27.	Which of the fo	ollowing molecules will	form a linear pol	ymeric structure
	due to hydroge	en bonding?	[AIPN	MT 2000]
	a. NH_3	b. H_2O	c. HCl	d. HF

28.	Which of the following is not a paramagnetic?			[AIPMT 2000]	
	a. NO	b. N ₂ ⁺	c. CO	d. O ₂	
29.	Which of the follo	wing two are isostr	uctural? [AIP	MT 2001][BHU 2007	
	a. XeF_2 , IF_2^-	b. NH_3, BF_3	$c. CO_3^{2-}, SO_3^{2-}$	$^{2-}$ d. PCl_5 , ICI_5	
30.	In which of the fo	ollowing bond angle	is maximum	? [AIPMT 2001]	
	a. <i>NH</i> ₃	b. <i>NH</i> ₄	c. PCl_3	d. SCl_2	
31.	Which of the follo	owing has $p\pi - d\pi$	bonding?	[AIPMT 2002]	
	a. No_3^-	b. So_3^{2-}	c. Bo_3^{3-}	d. Co_3^{2-}	
32.	The number of σ	and π -bonds pres	ent in 1-buten	-3-yne are	
				[AFMC 2000]	
	a. 7σ and 5π	b. 6σ and 44π	c. 6σ and	6π d. 7σ and 3π	
33.	Both BF_3 and NI	are covalent but	BF ₃ molecule	is non-polar while	
	NF_3 is polar beca	use		[AFMC 2001]	
	a. Boron is a metal	while nitrogen is a	gas		
	b. BF_3 is a planar	but NF_3 is pyramidal			
	c. Atomic size of b	ooron is smaller than	nitrogen		
	d. B-F bond has no	dipole moment wh	ile N-F bond h	as dipole moment	
34.	NH_3 is added to B	$2F_3$ by		[AFMC 2001]	
	a. Ionic Bond	b. Covalent bond			
	c. Dative bond	d. Molecular bor	nd		
35.	Ionic bond forma	tion between Aand	B can take pl	ace only if	
1	1,			[AFMC 2001]	
1	a. Ionization energ	y of A is less and el	ectron affinity	of B is more.	
	b. If ionisation ene	ergy of both A and B	are more.		
	c. Both have equal electron affinities.				
	d. None of the above.				

36.	Ethane molecule	contains		[AMU 2000]
	a. One π -bond and	d five σ -bonds	b. Two π	bonds only
	c. Two π -bonds a	nd four σ -bon	ds d. Four π -	bonds and σ -bonds
37.	Which of the follo	owing species i	is diamagnetics?	[AMU 2001]
	a. O_2	b. O_{2}^{2-}	c. O_{2}^{-}	d. O ₂ ⁺
38.	MO configuration	\mathbf{n} of He_2^- is		[AMU 2001]
	a. $\sigma 1s^2 \sigma 1s^2 \sigma 2s^1$		b. $\sigma 1s^2 \sigma 1s^2 \sigma 2s^2$	cO,
	c. $\sigma 1s^2 \sigma 1s^1 \sigma 2s^2$		d. $\sigma 1s^2 \sigma 1s^1 \sigma 2s^1$	O
39.	The orbitals of sa	me energy lev	el providing the m	ost efficient
	overlapping are		[PM	T (HARYANA) 2000]
	a. sp-sp	$b. sp^2 - sp^2$	c. $sp^3 - sp^3$	d. All of the these
40.	What is the corre	ct sequence of	bond order?	
			[PMT (HARYAN	NA) 2000; BHU 2004]
	a. $O_2^+ > O_2^- > O_2^-$			
	c. $O_2^- > O_2^+ > O_2$	d. $O_2 > O_2^+ >$	O_2^+	
41.	The number of S	P³ - hybrid car	bons in 2- butyne	is
		15	[PM	TT (HARYANA) 2001]
	a. 1	b. 2	c. 3	d. 4
42.	Anti bonding mol	lecular orbital	is formed by	(DPMT 2000)
	a. Addition of way	ve function of a	tomic orbitals	
	b. Subtraction of v	vav e functions	of atomic orbitals.	
	c. Multiplication o	of wave function	n of atomic orbitals	
N	d. None of the abo	ve		
43.	In Lewis formula	of O_3 there are	re	(DPMT
2000)				
	a. 2σ , 1π , 4 lone	pairs	b. $1^{\sigma}, 2^{\pi}, 1$ los	ne pairs
	c. 2σ , 2π , 3 lone	pairs	d. 2σ , 1π , $6 lon$	e pairs

44.	The number pos	ssible resonating struc	etures for CO_3^{2-} io	on is
			[PM	IT (MP) 2000]
	a. 9	b. 6	c. 3	d. 2
45.	The correct ord	er of bond angles in tl	ne molecule H_2O ,	NH_3 , CH_4 and
	CO_2 is		[PMT (K	ERALA) 2001]
	a. $H_2O > NH_3 > 0$	$CH_4 > CO_2$	b. $H_2O < NH_3 < 0$	$CO_2 < CH_4$
	C. $H_2O > NH_3 <$	$CH_4 > CO_2$	d. $CO_2 > CH_4 >$	$NH_3 > H_2O$
46.	In OF_2 , number	r of bond pairs and lo	ne pairs of electr	ons are
	respectively		J. O	[DPMT 2002]
	a. 2, 6	b. 2, 8	c. 2, 10	d. 2, 9
47.	Which of the fol	lowing does not conta	in coordinate boi	nd?
			[PMT (RAJA	ASTHAN) 2002]
	a. BH_4^-	b. <i>NH</i> ₄ ⁺	c. CO_3^{2-}	d. H_3O^+
48.	Which of the fol	lowing bonds require	s the largest amo	unt of energy to
	dissociate into the	he constituent atoms?	[PMT (F	KERALA) 2003]
	a. $H - H$ bond i	n H ₂	b. $C-H$ Bond	in CH_4
	c. $N \equiv N$ bond i	N_2	d. $O = O$ Bond	in O_2
49.	The ONO angle	is maximum in		[AIIMS 2004]
	a. NO_3^-	b. NO_2^-	c. NO_2	d. NO_2^+
50.	Which statemen	at is true for N_3^- ion?		[AIIMS 2004]
1	a. It has a non – l	inear structure		
11.	b. It is called pse	udohalogen		
	c. The average of	xidation state of N in th	ne ion is -1	
	d. It is isoelectro	nic with NO ₂		
51.	Among the follo	wing, the pair in whic	ch two species are	not isostructural
	ic			[AIIMS 2004]

	a. SiF_4 and SF_4	b. IO_3^- and XeC	3			
	c. BH_4^- and NH_4^+	$\mathrm{d.}PF_6^-$ and SF_6				
52.	In regular octahed	ral molecule MX ₆	, the number	of XMX bonds at		
	180° is			[AIPMT 2004]		
	a. 3	b. 2	c. 6	d. 4		
53.	H_2O is dipolar wh	ereas BeF_2 is not,	It is because	[AIPMT 2004]		
	a. electro negativity	a. electro negativity of F is greater than that of O				
	b. H_2O involves H	b. H_2O involves H – bonding whereas BeF_2 is a discrete unit				
	c. H_2O is linear an	c. H_2O is linear and BeF_2 is angular				
	d. H_2O is angular a	and BeF_2 is linear		\mathbf{O}		
54.	In BrF ₃ molecule,	the lone pairs occi	ıpy equatoria	l position around Br		
	atom to minimize.					
	a. Lone Pair – bond pair repulsions only					
	b. Lone Pair – lone pair repulsions only[AIPMT 2004]					
	c. Bond Pair – bond pair repulsions only					
	d. Lone Pair – bond	pair as well as lon	e pair – lone pa	air repulsions		
55.	Which hybridizati	ons has sulphur in	SO ₂ ? [PMT	(HARYANA) 2003]		
	a. sp^2	b. sp^3d^2	c. sp^3	d. sp		
56.	The hybridizations	s of nitrogen in No	O_2^+ , NO_3^- and	NH_4^+ are respectively		
	· 10.		[PM	T(HARYANA)2005]		
	a. sp , sp^3 and sp^2		b. sp , sp^2 and sp^3			
	c. sp^2 , sp and sp^3		d. sp	$p^2 sp^3$ and sp		
57.		nce of hybridizatio	on of methane	, ethane and acetylene		
	is			[CPMT 2003]		
	$a. sp^2, sp^3, sp$ b. sp	p, sp^2, sp^3 c. sp	p^3 , sp^2 , sp	d. sp^3 , sp , sp^2		
58.	Hybridizations pro	esent in CIF, is		[CPMT 2005]		

a.
$$s^2d^2$$

b.
$$sp^3$$

c.
$$dsp^2$$
 d. sp^3d

$$d. sp^3 d$$

59. Electron deficient molecule is [CPMT 2005]

a.
$$CCI_4$$

b.
$$PCl_5$$
 c. BF_3 d. SF_6

c.
$$BF_3$$

d.
$$SF_6$$

The number of σ and π bonds in Allyl Isocyanide are **60.**

$$[CH_2 = CH \cdot CH_2 : -NC]$$

[CPMT 2006]

a.
$$9\sigma$$
, 3π

a.
$$9\sigma$$
, 3π b. 9σ , 9π c. 3σ , 4π

c.
$$3\sigma$$
, 4π

d.
$$5\sigma$$
, 7π

KEY