Stoichiometric Calculations

1. What volume of Hydrogen will be liberated at STP when 8gm of Calcium completely reacts with water?
(AIIMS 2010)
1) 0.2 cc
2) 0.4 cc
3) 224 cc
4) 4480 cc

Ans: $4 \quad\left[\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}\right]$
2. 20 Kg of N_{2} and 3 Kg of H_{2} are mixed to produce $\mathrm{NH}_{3}(\mathrm{~g})$. The mass of Ammonia formed is
(PMT2011)

1) 17 Kg
2) 34 Kg
3) 20 Kg
4) 3 kg

Ans: 1. $\left[\mathbf{N}_{2} \mathbf{+ 3 H}_{\mathbf{2}} \rightarrow \mathbf{2} \mathbf{N H}_{3}\right]$
3. What is the volume (lit) of oxygen required at STP to completely convert 1.5 moles of sulphur into sulphurdioxide?

1) 11.2
2) 22.4
3) 33.6
4) 44.8

Ans: 3 [HINT: $\mathrm{S}+\mathrm{O}_{\mathbf{2}} \rightarrow \mathrm{SO}_{2}$]
4. ' X ' litres of carbonmonoxide is present at STP. It is completely oxidised to $\mathbf{C O}_{2}$. The volume of $\mathbf{C O}_{2}$ formed is $\mathbf{1 1 . 2 0 7}$ litres at STP. What is the value of ' X ' in litres?

1) 22.414
2) 11.207
3) 5.6035
4) 44.828

Ans: 2 [HINT: 2CO+O $\mathbf{O}_{\mathbf{2}} \rightarrow \mathbf{2} \mathrm{CO}_{2}$]
5.One mole of fluorine is reacted with two moles of hot and concentrated KOH . The products formed are $\mathrm{KF}, \mathrm{H}_{2} \mathrm{O}$ and O_{2}. The molar ratio of $\mathrm{KF}, \mathrm{H}_{2} \mathrm{O}$ and O_{2} respectively
(E-2002)

1) $1: 1: 2$
2) 2: $1: 0.5$
3) 1:2:1
4) $2: 1: 2$

Ans: $2 \quad\left[2 \mathrm{~F}_{2}+\mathbf{4 K O H} \rightarrow \mathbf{4 K F}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}\right]$
6. 10 g of CaCO_{3} is completely decomposed to X and $\mathrm{CaO} . \mathrm{X}$ is passed into an aqueous solution containing one mole of sodium carbonate. What is the number of moles of sodium bicarbonate formed?

1) 0.2
2) 0.1
3) 0.01
4) 10

Ans: $1\left[\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}\right.$ and $\left.\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow 2 \mathrm{NaHCO}_{3}\right]$
7. What is the volume (in litres) of CO_{2} liberated at STP , when 2.12 gms of sodium carbonate (MW=106) is treated with excess dilute $\mathbf{H C l}$?

1) 2.28
2) 0.448
3) 44.8
4) 22.4

Ans: $3 \quad\left[\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathbf{H C l} \rightarrow 2 \quad \mathrm{NaCl}_{+} \mathbf{H}_{2} \mathrm{O}+\mathrm{CO}_{2}\right]$
8. Two grams of sulphur is completely burnt in oxygen to form SO_{2}. In this reaction, what is the volume (in litres) of oxygen consumed at STP? (At.wts. of sulphur and oxygen are 32 and 16 respectively)

1) $16 / 22.414$
2) $22.414 / 16$
3) $22.414 / 32$
4) $32 / 22.414$

Ans: $2 \quad\left[\quad \mathbf{S}+\mathbf{O}_{2} \rightarrow \mathbf{S O}_{2}\right]$
9. At $\mathbf{T}(\mathbf{K}), 100$ litres of dry oxygen is present in a sealed container. It is subjected to silent electric discharge, till the volumes of oxygen and ozone become equal. What is the volume (in litres) of ozone formed at $\mathbf{T}(\mathrm{K})$?

1) 50
2) 60
3) 30
4) 40

Ans: $4 \quad\left[\mathbf{3 O}_{2} \rightarrow \mathbf{2 O}_{3}\right]$
10. ' S ' grams of calcium carbonate were completely burnt in air. The weight of the solid residue formed is 28 g . What is the value of ' S^{\prime} (in grams)? (E-2005)

1) 44
2) 200
3) 150
4) 50

Ans: $4\left[\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}\right]$

