Spectra, Hydrogen Spectrum, Bohr's Model

1.	The energy of an electron present in Bohr's second orbit of hy				
	atom is		(E - 2001)		
	1) –1312 J atom ^{–1}	$2) - 328 \text{ kJ mol}^{-1}$	2		
	$3) - 328 \text{ J mol}^{-1}$	4) – 164 kJ mol ^{–1}	~O)		
2.	Splitting of spectral lines under the influ	uence of strong mag	netic field is		
	called		(AFMC)		
	1) Stark Effect	2) Zeeman effect			
	3) Photoelectric effect	4) None of these			
3.	The wave number of first line of Balmer	series of H-atom is	15200 cm ⁻¹ .		
	The wave number of first Balmer line of	Li ²⁺ ion is	(IIT 92)		
	1) 15200 cm ⁻¹	2) 60800 cm ⁻¹			
	3) 76000 cm ⁻¹	4) 136,800cm ⁻¹			
4.	What are the values of n ₁ and n ₂ respectively for line in the Lyman se				
	of hydrogen atomic spectrum?		(E 2001)		
	1) 3 and 5 2) 2 and 3 3) 1	and 3	4) 1 and 4		
5.	If the electron of a hydrogen atom is present in the first orbit, the total				
	energy of the electron is		(E-2003)		
N	1) $\frac{-e^2}{r}$ 2) $\frac{-e^2}{r^2}$	3) $\frac{-e^2}{2r}$	4) $\frac{-e^2}{2r^2}$		
6.	The angular momentum of an electron	present in the exc	ited state of		
	hydrogen is 1.5h/. The electron is presen	(M- 2006)			
	1) Third orbit	2) Second orbit			
	3) Fourth orbit	4) Fifth orbit			

7.	The wavelength of a spectral line emitted by hydrogen atom in the					
	Lyman series is $16/15R$ cm. What is the value of n_2 ?					
	(R = Rydberg cons	tant)	(E - 2007)			
	1) 2	2) 3	3) 4	4) 1		
8.	What is the lowes	t energy of the spec	tral line emitted	by the hydrogen		
	atom in the Lyman series? (h = Planck constant, c = Velocity of light, R					
	Rydberg constant)		(M- 2005)	60.		
	$1) \frac{5hcR}{36}$	$2) \frac{4hcR}{3}$	$3) \frac{3hcR}{4}$	$4) \frac{7 hcR}{144}$		
9.	Bohr's radius for the Hydrogen atom (n=1) is $0.53 A^{\circ}$.The radius for the					
	first excited state is	S		(CBSE1998)		
	1) 0.13A°	2) 1.06A°	3) 4.77A°	4) 2.12A°		
10)	The wavelength of	visible light is		(AIIMS 1998)		
	1) 2000-3700A°		2) 7800-8900)A°		
	3) 3800-7600A°	.0	4) 500-12004	A°		
11.	The Velocity of the electron in the 2nd orbit of Hydrogen atom is					
		5	(AIIMS 2001)			
	1) 10.96×10 ⁶ m/sec		2) 18.88×10^6 m/sec			
	3) 1.888×10 ⁶ m/sec		4) 1.094×10 ⁶ m/sec			
12.	In Hydrogen atom energy of the electron in first excited state is-3.4eV.					
	Then kinetic energ	y in same orbit is		(CBSE 2002)		
1	1) +3.4eV	2) +6.8eV	3) -13.6eV	4) +13.6eV		
13.	. The ratio of Radiu	sof 4th and 2nd orbit	s of H- atom is	(BHU 2003)		
	1)2	2)4	3) 3	4)6		
14.	When the electron	in hydrogen atom ju	mps from 4th orb	oit into the first		
	orbit, the frequenc	y of radiation will be		(CBSE 2004)		

	1) 1.54×10 ¹⁵	2) 1.03×10 ¹⁵	3) 3.08×10 ¹⁵	4) 2.0×10 ¹⁵						
15.	The radius of first	t orbit in H-ato	om is R, and then	radius of first orbi	t in					
	will be			(PMT2009)						
	1) R/9	2) R/3	3) 3R	4) 9R						
16.	In Bohr series of l	ines of hydrogo	en spectrum, the	third line from the	red					
	end corresponds to which one of the following inter-orbit jumps of the									
	electron for Bohr	orbits is an atoı	n of hydrogen.	(2002 A.I.E.E.E)						
	$1) 5 \rightarrow 2$	$2) \ 4 \rightarrow 1$	$3) \ 2 \rightarrow 5$	$4) \ 3 \rightarrow 2$	2					
17.	What are the valu	es of n ₁ and n	2 respectively for	H_{β} line in the Lym	nan					
	series of hydrogen	(E-2000)							
	1) 3 and 5	2) 2 and 3	3) 1 and	3 4) 2 and	4					
18.	What is the way	velength of H	f_{β} line the Balmo	er series of hydro	gen					
	spectrum? $\mathbf{R} = \mathbf{R}\mathbf{y}$	(M-2000)								
	1) 36/5R	2) 5R/36	3) 3R/16	4) 16/3R	2					
	KEY									
	1)2 2)2	3) 4 4) 4	5) 3	5) 1 7) 3 8) 3						
	9) 4 10) 3	11) 4 12) 1	13) 2 14) 3 15)2 16) 1						

17) 3 18) 1

Hints

1.
$$E_n = \frac{-1312}{n^2} = \frac{-1312}{2^2} KJ / mole$$

3. for same spectral line,
$$\frac{\overline{v_H}}{\overline{v_{Li^{+2}}}} = \frac{Z_H^2}{Z_{Li^{+2}}^2} = \frac{1^2}{3^2}$$

6.
$$mvr = \frac{nh}{2\pi} = \frac{1.5h}{\pi}, n = 3$$

7.
$$\frac{1}{\lambda} = R(\frac{1}{{n_1}^2} - \frac{1}{{n_2}^2}), R(\frac{1}{1^2} - \frac{1}{n^2}) = \frac{15R}{16}$$
 n=4

3. for same spectral line,
$$\frac{v_H}{v_{L'}^2} = \frac{Z^2 h}{Z^2_{L'}^2} = \frac{1^2}{3^2}$$

6. $mvr = \frac{nh}{2\pi} = \frac{1.5h}{\pi}, n = 3$

7. $\frac{1}{\lambda} = R(\frac{1}{n_1^2} - \frac{1}{n_2^2}), R(\frac{1}{1^2} - \frac{1}{n^2}) = \frac{15R}{16}$ n=4

8. Lowest energy is for

$$H_{\alpha}, \frac{1}{\lambda} = R(\frac{1}{n_1}^2 - \frac{1}{n_2}) = R(\frac{1}{1^2} - \frac{1}{2^2}) = \frac{3R}{4}$$

$$\Delta E = \frac{hc}{\lambda} = hc(\frac{3R}{4}) = \frac{3hcR}{4}$$

14. $\frac{1}{\lambda} = R(\frac{1}{n_1^2} - \frac{1}{n_2^2}), v = \frac{c}{\lambda}$

14.
$$\frac{1}{\lambda} = R(\frac{1}{{n_1}^2} - \frac{1}{{n_2}^2}).\upsilon = \frac{c}{\lambda}$$