D&F-Block Elements

D-Block Elements

The following belongs to d-block but it is not a transition element					
1) Mn	2) Fe	3) Zn	4) Cr		
The following is r	ot a typical trans	ition element			
1) Cu	2) Ag	3) Au	4) Mn		
Which of the follo	owing statement r	egarding transition	on elements is false?		
1) Their atoms cor	tain partially filled	1 'd' orbitals			
2) They are capabl	e of showing varia	ble valencies			
3) All of their ions	are colourless	~0			
4) They form com	plexes readily				
Which set of elem	ents is transition	al in character?			
1) Fe, Co, Ni	2) Ru, Rh, Pd	3) Os, Ir, Pt	4) All the above		
Which of followir	ng is a true transit	tion element?			
1) Zinc	2) Cadmium	3) Aluminium	4) Iron		
Which of the follo	owing is not an ele	ement of first tran	sition series?		
1) Fe	2) Co	3) Ni	4) Ag		
Which of the follo	owing set of eleme	ents does not belo	ongs to transitional		
elements?					
1) Fe, Co, Ni	2) Cu, Ag, Au	3) Ti, Zr, Hf	4) Ga, In, Tl		
In the transition of	elements the inco	ming electron occu	upies [n-1] d sublevel in		
preference to					
1) np	2) ns	3) [n-1]d	4) [n+1]s		
Catalytic activity	of transition elen	nents and their co	mpounds is due to their		
1) Small size	2) Vaca	ant d-orbitals			
3) Higher densities	s 4) Colo	pur			
	The following bel 1) Mn The following is r 1) Cu Which of the follor 1) Their atoms cor 2) They are capabl 3) All of their ions 4) They form comp Which set of elem 1) Fe, Co, Ni Which of followin 1) Zinc Which of the follor 1) Fe Which of the follor elements? 1) Fe, Co, Ni In the transition of preference to 1) np Catalytic activity 1) Small size 3) Higher densities	The following belongs to d-block b1)Mn2) FeThe following is not a typical transman1)Cu2) AgWhich of the following statement r1)Their atoms contain partially filled2)They are capable of showing varia3)All of their ions are colourless4)They form complexes readilyWhich set of elements is transition1)Fe, Co, Ni2) Ru, Rh, PdWhich of following is a true transit1)Fe2) CoWhich of the following set of element1)Fe2) CoWhich of the following set of element1)Fe, Co, Ni2) Cu, Ag, Au1)Fe, Co, Ni2) Cu, Ag, Au1)Fe, Co, Ni2) Cu, Ag, Au1)np2) nsCatalytic activity of transition elements1)Small size2) Vaca3)Higher densities4) Color	The following belongs to d-block but it is not a trans1) Mn2) Fe3) ZnThe following is not a typical transition element1) Cu2) Ag3) AuWhich of the following statement regarding transition1) Their atoms contain partially filled 'd' orbitals2) They are capable of showing variable valencies3) All of their ions are colourless4) They form complexes readilyWhich set of elements is transitional in character?1) Fe, Co, Ni2) Ru, Rh, Pd3) Os, Ir, PtWhich of following is a true transition element?1) Zinc2) Cadmium3) AluminiumWhich of the following is not an element of first trans1) Fe2) Co3) NiWhich of the following set of elements does not below1) Fe2) Cu, Ag, Au3) Ti, Zr, HfIn the transition elements the incomplexes readilyWhich of the following is not an element of first trans1) Fe2) Co3) NiWhich of the following set of elements does not belowelements?1) Fe, Co, Ni2) Cu, Ag, Au3) Ti, Zr, HfIn the transition elements the incomplexes and their colspan="2">In the transition elements and their colspan="2">In the transition elements the incomplexes1) Fe2) ns3) [n-1]dCalamini Si Cu Ag, Au3) Ti, Zr, HfIn the transition elements the incomplexes and their colspan="2">In the transition elements and their colspan="2">In the transition elements		

10.	Best conductor	of electricity is					
	1) Cu	2) Al	3) Au	4) Ag			
11.	Transition metals are good electrical conductors because						
	1) They are meta	1) They are metals 2) They are solids					
	3) They have free	e electrons in outer	energy levels 4) They are hard.			
12.	Which of the fol	lowing set of elem	ents are transitio	n elements?			
	1) Po, At, Rn	2) Ga, In, Tl	3) Cs, Ba, La	4) Ac, Ku, Ha			
13.	Which of the fo	llowing is not corr	ect about transiti	on metals?			
	1) Their melting	and boiling points	are high	<u>.</u>			
	2) Their compou	nds are generally co	oloured				
	3) They can form	ionic or covalent c	compounds				
	4) They do not ex	xhibit variable valer	ncy				
14.	The only liquid	element in'd' bloc	k is				
	1) Hg	2) Sc	3) Zn	4) Th			
15.	Total number of	f elements present	in VIII B group i	S			
	1) 3	2) 6	3) 12	4) 8			
16.	Chemically Zine	c group elements c	losely resemble				
	1) I A group	2) II A group	3) III A group	4) IV A group			
17.	The following is	not a noble metal					
	1) Au	2) Cu	3) Ag	4) Pt			
18.	The transition n	netal present in vit	amin B ₁₂ is				
	1) Fe	2) Co	3) Ni	4) Na			
19.	Incorrect staten	nent is					
	1) d-block eleme	ents usually form co	oloured ions.				
	2) Mn^{+2} ions are	e much more capabl	e of forming comp	lexes than the Zn^{+2} ions.			
	3) Alkali metals	are strong reducing	agents.				
	4) All the cations	of d-block elemen	ts are paramagneti	с.			

Elec	ctronic Configuration			
20.	General electron configuration of d-block elements is			
	1) $ns^2np^6nd^{1-10}$	2) (n-1) d ¹⁻¹⁰ ns ⁰⁻²	2 _{np} 0-6	
	3) (n-1) d ¹⁻¹⁰ ns ¹⁻²	4) nd ¹⁻⁹ ns ⁰⁻²		
21.	The ground state electron	ic configuration of c	hromium is against	
	1) Hund's rule	2) Pauli's principle		
	3) Aufbau principle	4) Boyle principle	~0`	
22.	Which of the following is	the stable electron co	onfiguration of Fe ⁺³ ion?	
	1) $3d^{6}4s^{0}$ 2) $3d^{5}2$	$_{4s}0$ 3) 3d ⁶ 4s ²	2 4) $3d^4 4s^2$	
23.	The following has pseudo	-inert gas configurat	ion in the (n-1) shell.	
	1) Typical transition element	nts 2) Zin	c group elements	
	3) Both	4) Nei	ither	
24.	The general configuration	n (n-1) d ³ ns ² indicate	es that particular element belongs	
	to the following group			
	1) II B 2) I B	3) V B	4) III B	
25	Which of the following ion	n has same number o	of unpaired electrons as that of	
	V ³⁺ ion?	つ		
	1) Cr ⁺³ 2) Mn ⁺	2 3) Ni ⁺²	4) Fe ⁺³	
26.	Which one of the followin	g pairs of ions has th	e same electronic configuration?	
	1) Fe^{+2} and Mn^{+2}			
	2) Fe^{+3} and Mn^{+2}			
	3) Pr^{+3} and Fe^{+3}			
	4) Mn^{+2} and Ni^{+2}			
27.	In which of the following	elements, the configu	ration is against Aufbau rule?	

1) Ni, Pd, Pt 2) Sc, Ti, Zr 3) Pd, Pt, Cu 4) Fe, Cr, Mn

28.	The configuration of chromium atom in ground state is				
	1) [Ar] 3d ⁴ 4s ¹	2) [Ar] 3d ⁵ 4s ¹	3) [Ar] 3d ⁶ 4s ²	4) [Ar] 3d ⁷ 4s ²	
29.	Which of the follo	wing has more unj	paired d-electron	s?	
	1) Zn ⁺	2) Fe ²⁺	3) Ni ⁺	4) Cu ⁺	
30.	The outer electro	on configuration of	first transition so	eries is (n-1)d ¹⁻¹⁰ ns ^{1-,2} .	
	The value of n is				
	1) 3	2) 4	3)	4) 6	
31.	A transition meta	al 'x' has the config	guration [Ar] 3d ⁴	in its +3 oxidation state.	
	The element is				
	1) Mn	2) Fe	3) Ti	4) K	
32.	The outer electro	onic configuration o	of the element M	o (Z=42) is	
	1) $5s^2 4d^4$	2) $5s^{1}4d^{5}$	3) $5s^2 5p^4$	4) $4s^2 3d^4$	
33	In which group o	of the d-block the e	lectronic configu	ration is not as expected	
55.	In which group o	n me u proek me e	een onie oonigu		
55.	1) III B	2) IV B	3) VI B	4) II B	
34.	 1) III B The outside energy 	2) IV Bgy levels of an atom	3) VI B n have the co	4) II B nfiguration $s^2 p^6 d^5 s^2$.	
34.	 III B The outside energy The atom belong 	2) IV B gy levels of an atom s to	3) VI B n have the con	4) II B nfiguration $s^2 p^6 d^5 s^2$.	
34.	 III B The outside energy The atom belong Copper family 	 2) IV B gy levels of an atom s to 2) Zinc family 	3) VI B n have the con 3) Iron family	 4) II B nfiguration s² p⁶ d⁵ s². 4) Manganese family 	
33.34.35.	 III B The outside energy The atom belong Copper family The atomic number 	 2) IV B gy levels of an atom s to 2) Zinc family ber (Z) of an eleme 	 3) VI B a have the constraint of the constraint	 4) II B anfiguration s² p⁶ d⁵ s². 4) Manganese family und state, how many 	
33.34.35.	 III B The outside energy The atom belong Copper family The atomic number electrons are present 	 2) IV B gy levels of an atom s to 2) Zinc family ber (Z) of an element in the "N" sheep sent in the "N" sent in the "	3) VI B n have the con 3) Iron family ont is 25 in its gro cll?	 4) II B anfiguration s² p⁶ d⁵ s². 4) Manganese family und state, how many 	
34. 35.	 III B The outside energy The atom belong Copper family The atomic number electrons are presented 1) 13 	 2) IV B gy levels of an atom s to 2) Zinc family ber (Z) of an element in the "N" sheen and the atom 2) 2 	3) VI B a have the con- 3) Iron family ant is 25 in its gro a)15	 4) II B anfiguration s² p⁶ d⁵ s². 4) Manganese family und state, how many 4)3 	
33.34.35.35.36.	 III B The outside energy The atom belong Copper family The atomic number electrons are pressional 1) 13 Of the following of 	 2) IV B gy levels of an atom s to 2) Zinc family ber (Z) of an element sent in the "N" sheen and the sent in the sent in	3) VI B a have the con- 3) Iron family ant is 25 in its gro all? 3)15 anfigurations of at	 4) II B anfiguration s² p⁶ d⁵ s². 4) Manganese family und state, how many 4)3 oms, the highest oxidation 	
33.34.35.36.	 III B The outside energy The atom belong 1) Copper family The atomic number of the following of the following of state is achieved 	 2) IV B gy levels of an atom s to 2) Zinc family ber (Z) of an element sent in the "N" sheen and the sent in the sent in	3) VI B a have the con- 3) Iron family ant is 25 in its gro a) 15 a) 15 a) 15 a) 15 b) 15 b	 4) II B anfiguration s² p⁶ d⁵ s². 4) Manganese family and state, how many 4)3 oms, the highest oxidation 	
33.34.35.36.	1) III B The outside energy The atom belong 1) Copper family The atomic number electrons are pressing 1) 13 Of the following of state is achieved 1) $(n-1)d^8 ns^2$	 2) IV B gy levels of an atom s to 2) Zinc family ber (Z) of an element sent in the "N" sheen and the sent in the "N" sheen and the sent in the "N" sheen and the sent in the sent in	3) VI B a have the considered of the constant of the	 4) II B anfiguration s² p⁶ d⁵ s². 4) Manganese family and state, how many 4)3 ans, the highest oxidation 4) (n-1)d⁵ ns² 	
 33. 34. 35. 36. 37. 	1) III B The outside energy The atom belong 1) Copper family The atomic number electrons are pressive 1) 13 Of the following of state is achieved 1) $(n-1)d^8 ns^2$ Abnormal electron	 2) IV B gy levels of an atom s to 2) Zinc family ber (Z) of an element sent in the "N" sheen and the sent in the "N" sheen and the sent in the "N" sheen and the sent in the sent in	3) VI B a have the con- 3) Iron family ant is 25 in its gro and a second se	 4) II B anfiguration s² p⁶ d⁵ s². 4) Manganese family and state, how many 4)3 ans, the highest oxidation 4) (n-1)d⁵ ns² 	

Occurrence of Transition Elements

38. In the following pair of d-block elements, the first member is a liquid at room temperature and the second member is mostly available in the earth's crust. The pair is

	1) Hg, Fe	2) Hg, Tc	3) Hg, Zn	4) Hg, Au
39.	The chemical for	rmula of siderite		
	$\left. \right) \ Fe_2O_3$	2) $Fe_{3}O_{4}$	3) $FeCO_3$	4) MnO_2
40.	The mineral of s	ilver is		···
	1) Argentite	2) Horn silver	3) Sylvine	4) Both 1 and 2
41.	The mineral of N	Manganese is	×	
	1) Pyrolusite	2) Hematite	3) Siderite	4) Rulite
42.	Calamine is the	mineral of		
	1) Fe	2) Zn	3) Co	4) Ti
43.	The chemical for	rmula of chromite n	nineral	
	1) $FeO.Cr_2O_3$	$_{2)}$ FeS ₂	3) ZnS	4) Ag_2S
Cha	aracteristic of 3d	Series		
44.	Which of the fol	lowing group eleme	nts exhibits high	melting and boiling
	points?			
	1) IVB	2) VB	3) VIB	4) IIB
45.	Transition eleme	ents have high MP&	BP due to	
	1) Use of ns elect	trons	2) Use of (n-	1) d electrons only
	3) Both ns and (n	-1) d electrons	4) Use of np	electrons
46.	Which group ele	ements exhibits high	est densities	
		2) IVB	3) VIB	4) VIIIB

47.	Which element exhibits highest density in 3d series?				
	1) Sc	2) Cr	3) Zn	4) Cu	
48.	The only elem	nent that exh	ibits positive SR	P value	
	1) V	2) Zn	3) Fe	4) Cu	
Oxi	dation States	OF 3d Serie	S		
49.	The following	g does not sho	ow variable vale	ncy	
	1) Mn	2) Fe	3) Zn	4) Cr	
50.	Element which	ch can show +	-2, +3, +4 +6 and	l +7 oxidation states is	
	1) Cr	2) Mn	3) Co	4) V	
51.	Maximum ox	idation state	exhibited by Os	mium is	
	1) +8	2) +7	3) +6	4) +5	
52.	An element N	A has the elec	tron configurati	on [Ar] 3d ⁵ 4s ² . Which one of its	
	oxide is unlik	ely to exist?	. 0		
	1) MO ₂	2) M ₂ O ₃	3) MO ₄	4) M ₂ O ₇	
53.	Which of the	following ele	ment exhibits m	aximum oxidation state?	
	1) Mn	2) Co	3) Fe	4) Zn	
54.	In which of t	he following o	compounds iron	has the lowest oxidation state?	
	1) Fe (CO)5	2) Fe ₂ O	3) K ₄ [Fe(CN) ₆	5]4) FeSO4 (NH4)2SO4. 6H2O	
55.	The stable ox	idation states	s of Cr are		
	1) + 3, + 6	2) + 3, + 4	3) + 1, + 4	4) + 2, + 5	
56.	Which of the	following ele	ment forms an o	oxide with highest Valency?	
	1) V	2) Cr	3) Mn	4) Fe	
57.	An element h	as [Ar]3d ⁴ co	onfiguration in i	ts +3 oxidation state Atomic number	
	of the elemen	ıt is			
	1) 25	2) 26	3) 22	4) 19	

58. Number of d-electrons in chromium of $[Cr (H_2O)_6]^{+3}$ ion are 1) 1 2) 2 3) 3 (4) (4)59. Maximum number of unpaired electrons is present in 3) Cr+3 1) Ti^{+2} 2) Sc^{+3} 4) Mn^{+2} 60. Due to the loss of the following electrons, Transition metals exhibit variable valency 1) ns 2) ns and np 3) (n-1) d 4) (n-1)d and ns **Atomic and Ionic Radii OF 3d Series** 61. Which of the following pairs of elements have same radii? 1) Zr.Hf 2) Sc. Y 3) La. AC 4) Zn. Cd 62. The correct order of atomic sizes is 1) Sc < Y < La2) Ti < Zr < Hf 3) Sc > 4) All Y > La**Colours of Transition Metal Ions** 63. Which of the following cation is colourless in its aqueous solution? 2) Sc+31) Cu^{+2} 3) Fe^{+3} 4) Co^{+3} Which of the following ion is coloured in its aqueous solution? **64**. 1) Cd^{+2} 2) Zn^{+2} 3) Sc^{+3} 4) Ti+3 Transition metals are coloured due to the following electronic transition **65**. 1) d - s 2) d - d 4) f - s 3) s - p **66**. Cuprous ion is colourless while cupric ion is coloured because, 1) Cuprous ion has completed d-orbitals while cupric ion has incomplete d-orbitals 2) Cuprous ion has exactly half-filled'd' orbitals

	3) Cupric ion has completely filled'd' orbitals, while cuprous ion has incompletely				
	filled'd' orbitals				
	4) Cupric ion has half - filled d-orbitals				
67.	The following ion	is coloured in aqu	eous solution		
	1) Zn ²⁺	2) Cd ⁺²	3) Co ³⁺	4) All the above	
68.	Colour of ferrous	ion is			
	1) Red	2) Blue	3) Pale green	4) Pale yellow	
69.	In which pair, bo	th ions are coloure	d in aqueous me	dium G	
	1) Sc $^{+3}$, Zn $^{+2}$	2) Cu+2, Ti+4	3) Ti ⁺³ , Co ⁺³	(4) Cd^{+2} , Mn^{+2}	
70.	The absorbed and	d emitted colours o	of hydrated ion a	re respectively	
	1) Pink and Green	2) Blue and Red	3) Red and Blue	4) Green and Pink	
71.	The following ion	shows colour not	due to d-d transi	tion	
	1) $Cr_2O_7^{2-}$	2) MnO ₄ ⁻	3) CrO_4^{2-}	4) All	
72.	The compound ha	aving Blue colour i	S		
	1) CuSO ₄	2) CuSO	4. 5H ₂ O		
	3) PbSO ₄	4) HgSC	04		
73.	Coloured complex	xes absorb radiatio	ons in the		
	1) Visible region	2) Infrared Region	3) Ultraviolet Re	egion 4) Far Infrared	
74.	The splitting of d	egenerated d-orbit	als takes place in	to which of the following	
	two sets.				
	1) d_{xy}, d_{z^2}, d_{xz} and	$\mathbf{d}_{yz}, \mathbf{d}_{x^2-y^2}$			
	2) d_{xy} , d_{yz} , d_{zx} and	$d_{x^2-y^2}, d_{z^2}$			
	3) $d_{xy}, d_{x^2-y^2}, d_{z^2}$	and d_{yz} , d_{xz}			
	4) $d_{xy}, d_{x^2-y^2}, d_{xz}$	and d_{yz} , d_{z^2}			

75.	. The colour of MnO ₄ ⁻ ion is due to				
	1) Unpaired'd' ele	ectrons	2) d - d transition		
	3) d - p transition		4) Charge transfer		
76.	During the splitt	ing of dege	merate d-orbitals under the influe	ence of ligand the	
	average d-orbital energy				
	1) Remains same		2) Increases		
	3) Decreases		4) May increase or decrease	~O`	
77.	The order of cold	ours exhibi	ted by and ions are respectively	0	
	1) Green, Blue, Y	ellow	2) Blue, Green, Yellow	•	
	3) Yellow, Blue, 9	Green	4) Blue, Yellow, Green		
78.	Which one of the	following	compound is both coloured and p	paramagnetic?	
	1) ScCl ₃	2) TiCl ₄	3) CrCl ₃	4) CuCl	
79.	The aqueous solu	ution of the	e following salt has colour		
	1) Zn (NO ₃) ₂	2) NiSO ₄	. 3) CaCl ₂	4) NaCl	
80.	Ti ³⁺ is purple, b	ut Ti ⁴⁺ is c	colourless. This is because		
	1) d ¹ configuration	on of Ti ³⁺ a	and d^0 configuration of Ti ⁴⁺		
	2) d^1 configuration	on of Ti ³⁺ a	nd d^{10} configuration of Ti ⁴⁺		
	3) d ⁰ configuratio	onof Ti ³⁺ ar	nd d ¹ configuration of Ti ⁴⁺		
	4) d ¹⁰ configurati	on of Ti ³⁺	and d^1 configuration of Ti ⁴⁺		
	N.				
Cat	alytic Properties				
	2				
81.	When is passed the	hrough aci	dified solution		
	1) The solution tur	ns blue	2) The solution	on is decolourised	
	3) Is reduced		4) Green is fo	rmed	
82.	Which of the foll	owing is us	sed as Catalyst in the hydrogenat	ion of oils?	
	1) V ₂ O ₅	2) Pd	3) Fe	4) Ni	

83. The catalyst used in the polymerisation of ethylene is

1) $R_3Al + TiCl_4$	2) <i>SnCl</i> ₄
3) Ni	4) Pt

Magnetic Properties

Maş	gnetic Properties			
84.	The ion having m	aximum magr	netic moment is	
	1) Co+3	2) Cr+3	3) Ni ⁺²	4) Cu+1
85.	Which of the follo	owing ion is di	amagnetic?	
	1) Zn ⁺²	2) Cr+3	3) Fe ⁺³	4) Mn ⁺²
86.	The following me	tal shows ferre	omagnetic nature	
	1) Co	2) Cr	3) Cu	4) Mn
87.	The following spe	cies is repelled	d by a magnetic field	
	1) Hg ⁺²	2) Fe ⁺²	3) Co+3	4) Ni ⁺²
88.	For a paramagne	tic substance,	the field strength of s	substance (B) and applied
	field strength (H)	are related as		
	1) B = H	2) B < H	3) B > H	4) B >>> H
89.	The following is r	ot a ferromag	netic	
	1) Fe	2) Co	3) Y	4) Ni
90.	Substances which	are repelled l	by the external magn	etic field are called
	1) Diamagnetic	2) P	Paramagnetic	
	3) Ferromagnetic	4) A	Antiferromagnetic	
91.	Magnetic momen	t of diamagnet	tic substance in Bohr	Magnetons is
	1) 1.73	2) 2.83	3) 5000	4) Zero
92.	The magnetic mo	ment of Fe ²⁺	in B.M	
	1) 2.84	2) 3.87	3) 1.73	4) 4.90

93. For first row transition metal ions the magnetic moment in Bohr magnetons is calculated by the formula

1)
$$\sqrt{n(n+1)}$$
 2) $\sqrt{4S(S+1)}$ 3) $\sqrt{n(n+2)}$ 4) both 2 & 3

94. For 2nd row and 3rd row transition metal ions the magnetic moment in Bohr magnetons is calculated by the formula

1)
$$\sqrt{4S(S+1)+L(L+1)}$$
 2) $\sqrt{4S(S+1)}$ 3) $\sqrt{n(n+2)}$

95. If the magnetic moment of a complex compound is 2.8 B.M. the number of unpaired electrons in the compound is

- 1) 1 2) 2 3) 3
- 96. Bohr Magneton value in S.I. Units is
 - 1) $9.273 \times 10^{-24} \text{ erg T}^{-1}$ 2) $9.273 \times 10^{-24} \text{ JT}^{-1}$ 3) $9.273 \times 10^{-17} \text{ JT}^{-1}$ 4) $9.273 \times 10^{-10} \text{ cal}^{-10}$
- 97. The observed magnetic moment value (μ_{obs}) is higher than calculated magnetic moment value for (μ_{cal})
 - 1) Ti^{+3} 2) V^{+2} 3) Co^{+2} 4) Cr^{+2}

Interstitial Compounds

98. Which of the following elements form interstitial compounds?

1) Alkali metals 2) Transition metals

3) Halogens 4) Noble gases

- 99. Hydrogen occupies the following holes, C and N occupy the following holes
 - 1) Tetrahedral and octahedral 2) Octahedral and tetrahedral
 - 3) Octahedral and octahedral 4) Tetrahedral and tetrahedral

100.	Formation of inte	rstitial compound	makes the	transitio	on metal	
	1) More soft	2) More ductile	3) More m	netallic	4) Mo	ore hard
101.	Which of the follo	owing is not a inters	stitial com	pounds?		
	1) TiC	2) MoC	3) $Fe_{0.82}O$		4) <i>Cr</i>	$_{2}O_{3}$
102.	ZnO is white in co	old and yellow whe	n hot beca	use		
	1) ZnO sublimes					
	2) ZnO melts					-0`
	3) It forms non stoichiometric compound at high temperatures					
	4) All					
Allo	Alloy Formation					
103.	The non transition	n metal present in	German si	lver is		
	1) Cu	2) Zn	3) Ni	4)) Pb	
104.	Transition metal	present in the alloy	Gun meta	al is		
	1) Ni	2) Zn	3) Sn	4)) Cu	
105.	The alloy used in	the reduction of ni	trites to ar	nmonia i	S	
	1) Gun metal	2) Devarda's alloy	3) Solder	metal 4)) Bronze	
106.	Invar is used in	0				
	1) Furnaces	2) Pendulum rods	3) Guns	4)) Bells.	
107.	The common met	al present in germa	an silver, b	ell metal	l and brass	s is
	1) Fe	2) Cu	3) Zn	4)) Sn	
108.	Which of the follo	owing is an alloy of	a metal ar	nd a non-	metal?	
	1) Bronze	2) Electron	3) Nic	hrome	4) Ste	eel
109.	Which of the follo	owing elements is al	lloyed with	n copp	per to form	brass?
	1) Pb	2) Bi	3) Sb		4) Zii	nc
110.	Gun metal is mad	le from				
	1) Cu, Sn, Zn	2) Cu, Sn	1	3) Ni, Fe	e, Cr	4) Cu, Zn

111.	Which of the following methods can be used for the preparation of alloys?				
	1) Melting a mixture of r	netals			
	2) Simultaneous electroly	ytic deposition of	of metals		
	3) By mixing the aqueous solution of the metal salts				
	4) Both 1 & 2				
112.	Which of the following	is non-ferrous	alloy?		
	1) Invar 2) Ni	chrome 3) Wood metal	4) Steel	
113.	Which of the following	properties of e	lements can be	modified by the	
	formation of alloys?			· · · ·	
	1) Resistance to Corrosic	on 2) Toughness		
	3) Malleability & Ductili	ty 4) All		
Pota 114.	ssium Permanganate When reacts with acid	lified	31100		
	1) Only is oxidized	2) O	nly is oxidised		
	3) Is oxidized and is re	duced 4) A	nd oxidized		
115.	In permanganate ion,	manganese has	s an oxidation 1	number of +7. Therefore	
	it is				
	1) sp3d2 Hybridised	2) sp	o2 Hybridised		
	3) sp3d3 Hybridised	4) d	2sp3 Hybridise	d	
116.	When acts as oxidising	g agent in acidi	c medium, the	oxidation number of Mn	
	decreases by				
	1) 1 2)	2	3) 3	4) 5	
117.	Potassium permangan	ate acts as an o	oxidant in neut	ral, alkaline as well as	
	acidic media. The fina	l products obta	ained from it in	the three conditions are,	
	respectively				

1)
$$MnO_4^{2-}, Mn^{3+}$$
 and Mn^{2+}

- 2) MnO_2 , MnO_2 and Mn^{2+}
- 3) MnO_2 , MnO_2^+ and Mn^{2+}
- 4) MnO_1 , MnO_2 and Mn^{2+}

118. When is fused with KOH, a coloured compound is formed, the product and its colour is

1) Purple Green2) Purple3) Brown4) Black

Potassium Dichromate

- **119.** Number of moles of reduced by one mole of iodide ions is
 - 1) 3 2) 1/3 3) 6 4) 1/6
- 120. Chromyl chloride when dissolves in NaOH solution gives yellow solution. The yellow solution contains
 - 1) $Cr_2O_7^{2-}$ 2) $Cr_2O_4^{2-}$ 3) CrO_5 4) Cr_2O_3
- 121. When chromite ore is fused with NaOH in the presence of air, the product formed is
 - 1) $Na_2Cr_2O_7$ Cr_2O_3 3) Na_2CrO_4 4) $K_2Cr_2O_7$
- 122. Number of moles of reduced by one mole of ions is
 - 1) 1/3 2) 3 3) 1/6 4) 6
- **123.** Number of Cr-O bonds in dichromate ion is1) 62) 73) 8
- 124. In dichromate dianion
 - 1) 4 Cr-O bonds are equivalent 2) 6 Cr-O bonds are equivalent
 - 3) All Cr-O bonds are equivalent 4)
- 4) All Cr-O bonds are non-equivalent

(4) (4)

1) $FeCr_2O_4$ 2) $FeO.Cr_2O_3$ 3) $FeCr_2O_7$ 4) Both (1) and (2)

Key

Level - I

01) 3	02) 4	03) 3	04) 4	05) 4
06) 4	07) 4	08) 1	09) 2	10) 4
11) 3	12) 4	13) 4	14) 1	15) 3
16) 2	17) 2	18) 2	19) 4	20) 3
21) 3	22) 2	23) 3	24) 3	25) 3
26) 2	27) 3	28) 2	29) 2	30) 2
31) 1	32) 2	33) 3	34) 4	35) 2
36) 4	37) 4	38) 1	39) 3	40) 4
41) 1	42) 2	43) 1	44) 2	45) 3
46) 4	47) 4	48) 4	49) 3	50) 2
51) 1	52) 3	53) 1	54) 1	55) 1
56) 3	57) 1	58) 3	59) 4	60) 4
61) 1	62) 1	63) 2	64) 4	65) 2
66) 1	67) 3	68) 3	69) 3	70) 4
71) 4	72) 2	73) 1	74) 2	75) 4
76) 1	77) 2	78) 3	79) 2	80) 1
81) 4	82) 4	83) 1	84) 1	85) 1
86) 1	87) 1	88) 3	89) 3	90) 1
91) 4	92) 4	93) 4	94) 1	95) 2
96) 2	97) 3	98) 2	99) 1	100) 4
101) 4	102) 3	103) 2	104) 4	105) 2

106) 2	107) 2	108) 4	109) 4	110) 1
111) 4	112) 3	113) 4	114) 3	115) 2
116) 4	117) 2	118) 1	119) 4	120) 2
121) 3	122) 1	123) 3	124) 2	125) 4

F-Block Elements

Lanthanides Introduction

1. Lanthanides are

1) 14 elements in the seventh period

(At. no. 90 to 103) that are filling 5f sublevel.

2) 14 elements in the sixth period

(At. No. 58 to 71) that are filling 4f sublevel

3) 14 elements in the seventh period

(At. No.58 to 71) that are filling 4f sublevel.

4) 14 elements in the sixth period (At.No.90 to 103)

2. Which of the following Lanthanide is radioactive?

- 1) Cerium 2) Promethium
- 3) Thulium (* 4) Lutetium

3. The most common Lanthanide is

1) Lanthanum 2) Cerium

3) Samarium 4) Plutonium

4. Non-Lanthanide atom is

- 1) La 2) Lu
- 3) Pr 4) Pm

5.	Lanthanides are characterized by the filling of the					
	1) Penultimate 4f energy level					
	2) Antipenultimate 4f	energy	v level			
	3) Penultimate 5f energy level					
	4) Antipenultimate 5f energy level					
6.	d -block elements for	m com	nplexes because they have			
	1) Vacant orbitals		2) Small sizes			
	3) Higher nuclear char	rge	4) All of the above			
7.	Which sub shell is filled up progressively in actinides?					
	1) 4f	2) 5f				
	3) 6d	4) 7s				
8.	The correct statement (s) from among the following is/are:					
	i) All the d and f-block elements are metals.					
	ii) All d and f-block elements form coloured ions.					
	iii) All d and f-block elements are paramagnetic.					
	1) i only	2) i an	nd ii			
	3) ii and iii	4) All				
Ele	ectronic Configuration	on and	l Oxidation States			

- 9. Which of the following is not the configuration of Lanthanide?
 - 1) [Xe]4f ¹⁰.6s² 2) [Xe] 4f ¹⁵d¹.6s² 3) [Xe]4f ¹⁴5d¹⁰6s¹ 4) [Xe]4f ⁷ 5d¹.6s²
- 10. The electronic configuration of f-block elements is represented by
 - 1) (n-2) f ¹⁻¹⁴(n-1) d⁰⁻¹ns²
 - 2) (n-2) f ¹⁻¹⁴(n-1) d⁰⁻⁵ns⁰⁻²
 - 3) (n-2) f 1-14(n-1) d⁰-10_{ns}1-2

4) (n-2) f ¹⁻¹⁴(n-1) d⁰⁻² (n-1)s²

11. The electronic configuration of cerium is

- 1) [Xe] $4f^{0}5d^{1}6s^{2}$ 2) [Xe] $4f^{1}5d^{1}6s^{2}$
- 3) [Xe] $4f^{2}5d^{0}6s^{2}$ 4) Both 2 and 3

12. The most common oxidation state of Lanthanides is

1) +4 2) +3 3) +64) +2

13. The most common oxidation states of cerium are

- 1) +2 and +4 2) +3 and +4
- 3) +3 and +5 4) +2 and +3

14. The outer shell electronic configuration of

Gd (Z = 64) is

- 1) $4f^{7}5d^{1}6s^{2}$ 2) $4f^{8}6s^{2}$
- 3) $4f^{9}6s^{1}$ 4) $4f^{7}5d^{2}6s^{1}$
- 15. The +3 ion of which one of the following has half filled 4f sub shell?

1) La 2) Lu 3) Gd 4) Ac

16. Which of the following elements shows more number of oxidation states in its

compounds?

- 1) Am 2) G
- 3) La (4) Eu
- 17. Lanthanide for which +2 and +3 oxidation states are common is
 - 1) La 2) Eu
 - 3) Ce 4) Nd

18. Cerium (Z = 58) is an important member of the Lanthanides. Which of the following statements about cerium is incorrect?

- 1) The +3 oxidation state of cerium is more stable than the +4 oxidation state.
- 2) The common oxidation states of cerium are +3 and +4
- 3) Cerium (IV) acts as an oxidizing agent

4) The +4 oxidation state of cerium is not known in solutions.

19. The element with the electronic configuration [Xe] $4f^{14}5d^{1}6s^{2}$ is a

- 1) Representative element
- 2) Transition element
- 3) Actinide element
- 4) Lanthanide element

Chemical Reactivity of Lanthanides

20. Which of the following ion is paramagnetic?

- 1) $La^{3+}(Z = 57)$ 2) $Lu^{3+}(Z = 71)$
- 3) $Yb^{3+}(Z = 70)$ 4) $Sm^{3+}(Z = 62)$

21. In aqueous solution Eu^{2+} acts as?

- 1) An oxidising agent
- 2) Reducing agent
- 3) Can act as either of these
- 4) Cannot act as either of these

22. The colour of Lanthanides and Actinides is due to

- 1) s-f transitions (2) p-f transitions
- 3) d-f transitions 4) f-f transitions

23. Which of the following has tendency to act as an oxidising agent?

1)
$$Ce^{4+}$$
 2) Sr
3) Lu^{3+} 4) Go

 m^{2+}

4) Gd^{3+}

24. Many Lanthanide elements are used to prepare

- 1) Ceramic Materials
- 2) Water Softener
- 3) Superconducting Materials

4) Enzyme Catalysts

25. Which of the following statement concerning Lanthanide elements is false?

- 1) All Lanthanides are highly dense metals.
- 2) Most characteristic oxidation state of Lanthanide elements is +3.
- 3) The ionic radii of trivalent Lanthanides steadily increase with increase in the atomic number
- 4) Lanthanides are separated from one another by ion exchange methods

Lanthanides Contraction its Consequences

- 26. A reduction in atomic size with increase in atomic number is a characteristic of elements of
 - 1) d-block 2) f-block
 - 3) Radioactive series 4) High atomic masses

27. The Lanthanide contraction refers to

- 1) Valence electrons of the Lanthanide series
- 2) Ionic radius of the series
- 3) The density of the series
- 4) Nuclear mass of the series

28. The atomic and ionic radii (M³⁺ ions) of Lanthanide elements decrease with increase in atomic number. This effect is called

- 1) Lanthanide contraction
- 2) Lanthanide expansion
- 3) Actinide contraction
- 4) Actinide expansion

29. Lanthanide contraction occurs because

- 1) The 4f electrons, which are gradually added, create a strong shielding effect.
- 2) The 4f orbitals are greater in size than the 3d and 3f orbitals.

- 3) The 5f orbitals strongly penetrate into the 4f orbitals.
- 4) The poor shielding effect of 4f electrons is coupled with increased attraction between the nucleus and the added electrons.

30. The Lanthanides contraction is responsible for the fact that

- 1) Zr and Y have about the same radius.
- 2) Zr and Nb have similar oxidation state.
- 3) Zr and Hf have about the same radius.
- 4) Zr and Zn have the same oxidation state.

31. The radius of La³⁺ (At.No.ofLa=57) is 1.06A. Which one of the following given

values will be closest to the radius of Lu³⁺ (Atomic No. of Lu=71)

- 1) 1.40A 2) 1.06A
- 3) 0.85A 4) 1.60A

32. The separation of Lanthanides by ion exchange method is based on

- 1) Basicity of the hydroxides
- 2) Size of the ions
- 3) The solubility of their nitrates
- 4) Oxidation state of the ion.

Actinides

33. The actinides showing +7 oxidation states are

1) U, Np 2) Pu, Am

3) Np, Pu 4) Am, Cm

34. Which of the following elements belongs to actinide series?

1) Lu 2) Gd 3) Th 4) La

- **35.** The electronic configuration of actinides cannot be assigned with degree of certainty because of
 - 1) Overlapping of inner orbitals

- 2) Free movement of electrons over all the orbitals
- 3) Small energy difference between 5f and 6d levels
- 4) None of the above

		Key			
1) 2	2) 2	3) 2	4) 1	5) 2	CO
6) 4	7) 2	8) 1	9) 3	10) 1	
11) 4	12) 2	13) 2	14) 1	15) 3	
16) 3	17) 2	18) 4	19) 4	20) 4	80
21) 2	22) 4	23) 1	24) 3	25) 3	
26) 2	27) 2	28) 1	29) 4	30) 3	
31) 3	32) 2	33) 3	34) 3	35) 1	
	20				
S					