4) 4N

Solution-1

1) 1N 2) 2N 3) 3N Hint: N= (w/v)%x10/GEW =10.6X10/53=2N 2. The weight of NaOH(in gm) present in 100ml of 0.5M NaOH solution is

1. Normality of 10.6% (w/v) *Na*₂*CO*₃ solution is

2) 1 2) 3 3) 2 4) 4

Solution: Wt=MX GMW X V in lit.=0.5X40X100/1000=2gm

- 3. An aqueous solution of 6.3g oxalic acid dihydrate is made upto 250ml. Volume of 0.1N NaOH required to completely neutralize 10ml of this solution is
 - 1)40 ml
 2) 20 ml
 3) 10 ml
 4) 4 ml

Solution: N of oxalic acid N₁=(wtX1000)/(GEWX V in ml)=6.3x1000/63X250

=0.4N

 $V_aN_a = V_bN_b$ i.e 10Xo.4= $V_bX0.1 \rightarrow V_b = 40$ ml

4. Equivalent weight of hypo in the reaction

$$Na_2S_2O_3 + Cl_2 + H_2O \longrightarrow Na_2SO_4 + 2HCl + S$$
, if M is molecular weight of hypo is
1) M 2) M/2 3) M/3 4) 2M

Solution: oxidation state of 'S' in Hypo=+2.5, in Na_2SO_4 is +6 and in elementary

form is zero. In reactant side total ox. state per molecule=+5

In product side total ox, state of s'=+6+0=+6

: Change in ox. State per molecule=6-5=1 : Equivalent weight of hypo=M/1=M

5. Molarity of pure water (density=1gm/ml) is

 1)40M
 2) 4M
 3) 55.6M
 4) 25M

 Solution: wt of 11it water=1000gm=1000/18=55.55
 moles, M=n/v in 1t

 =55.55/1=55.55M

Reason (R): Molarity & normality of a solution are always equal.

The correct answer is

1) Both A and R are true and R is correct explanation of A. 2) Both A and R are true and R is not correct explanation of A. 3) A is true but R is false. 4) Both A and R are false. **11.** Solid solution in the following is 4) Camphor in air 1) NaCl in water 2) Amalgam 3) Soda water 12. The volume of 0.1N H_2SO_4 solution required to exactly neutralise 5.6g of KOH is 2) 500 ml 3) 25 ml 1)250 ml 4) 1000 ml Solution: 5.6gm=5.6/56=0.1gm equivalents of KOH For complete neutralization, equivalents of KOH= equivalents of H_2SO_4 i.e. 0.1 = 0.1X Vin lt. \therefore V=1lit 13. Molarity of 0.2% (w/v) NaOH solution is 1)0.23) 0.05 2) 2 4) 0.5Solution: 0.2% (w/v) NaOH solution means 0.2 g of NaOH is dissolved in 100 ml of solution. Molarity $=\left(\frac{W}{G.M.W}\right)_{\text{solute}} \times \frac{1000}{\text{vol.inml}} = \frac{0.2}{40} \times \frac{1000}{100} = 0.05 \text{M}.$ 14. 20 ml of 0.2 N HCl and 40 ml of 0.4 N HNO₃ are mixed and the solution is diluted up to 100 ml. The normality of the resultant solution is 1)0.1 N 2) 0.15 N 3) 0.2N 4) 0.4 N Solution $N_{\text{Total}} = \frac{N_1 V_1 + N_2 V_2}{V_{\text{Total}}} = \frac{0.2 \times 20 + 0.4 \times 40}{100} = \frac{20}{100} = 0.2 \text{ N}$ **15.** Which of the following is more concentrated? 3) 1% H_2SO_4 4)1N H_2SO_4 1)1M H_2SO_4 2) 1m H_2SO_4

Hint: For poly basic acids the concentration in 1M>1m>1N>1%

16. 20ml of 10N HCl and 10ml of 5 N HCl are mixed and made upto 1 litre with distilled water. The normality of the resulting solution is 1) 0.25 N 2) 0.3 N 3) 0.20 N 4) 0.1 N Solution: $\therefore N_{\text{Total}} = \frac{N_1 V_1 + N_2 V_2}{V_{\text{Total}}} = \frac{10 \times 20 + 10 \times 5}{1000} = 0.25N$ 17. What is the normality of 0.3 M H_3PO_4 in the following reaction? $H_3PO_4 + 2OH^- \longrightarrow HPO_4^{2-} + 2H_2O$ 1) 0.15 N 2) 0.30 N 3) 0.10 N 4) 0.60 N **Solution:** as the acid looses two H⁺ ions, its basicity is 2. \therefore N=MX basicity=0.3X2=0.6N 18. Volume of water to be added to 1 litre of a solution of 1.123 N acid solution to make it 1N solution. 1) 900ml 2) 246 ml 3) 123 ml 4) 100 ml **Solution:** volume of water added= $V_1 (M_1 - M_2)/M_2$ =1000(1.123-1)/1=123ml 19. Normality of the acid solution obtained by diluting 250 ml of 0.4N H_2SO_4 with 1000ml of water is 2) 0.16 1)0.1 3) 0.2 4) 0.08 **Solution:** For dilution $V_1N_1 = V_2N_2$ $250X0.4=1250XV_2$ i.e V₂=0.08N 20. 10.6g of Na_2CO_3 was exactly neutralized by 100ml of H_2SO_4 solution. Molarity of H_2SO_4 solution is 1)1.0 2) 2 3) 0.5 4) 2.5 Solution: 10.6gm=10.6/53=0.2 gm equivalents of Na₂CO₃ For complete neutralization, equivalents of Na_2CO_3 = equivalents of H_2SO_4 i.e 0.2= N_a X 100/1000 thus N of $H_2SO_4 = 2N \therefore M = N/basicity = 2/2 = 1M$

- 21) A volatile solvent can be separated from non volatile solute by
 - 1) Evaporation 2) Distillation 3) Can't be separated 4) Filtration

22) The molarities of two solutions A & B are 0.1M and 0.2M respectively. If 100ml of A is mixed with 25ml of B there is no change in volume. Then final molarity of the solution is

4) 0.28 M

 1) 0.16 M
 2) 0.18 M
 3) 0.12 M

Solution: $M = \frac{M_1 V_1 + M_2 V_2}{(V_1 + V_2)} = \frac{0.1 \times 100 + 0.2 \times 25}{100 + 25} = 0.12 \text{ M}$

23) 200 ml of KMnO₄ solution is exactly reduced by 100 ml, 0.5M oxalic acid

solution. The molarity of KMnO₄ solution

1)0.1 2) 0.16 3) 0.2 4) 0.08 Solution: $2KMnO_4 + 3H_2SO_4 + 5H_2C_2O_4 \rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O +$

10CO₂

$$\frac{\frac{M_{1}V_{1}}{n_{1}}}{(KMnO_{4})} = \frac{M_{2}V_{2}}{n_{2}} \qquad \therefore \frac{M_{1} \times 200}{2} = \frac{0.5 \times 100}{5}, M_{1} = 0.1M$$

$$\therefore$$
 Molarity of KMnO₄ = 0.1 M

24) 250ml of Na_2CO_3 solution contains 2.65g of Na_2CO_3 . 10 ml of this solution is added to xml of water to obtain 0.001M Na_2CO_3 solution. The value of x in ml

1)1000 (2)990 (3)9990 (4)90

Solution: M₁=2.65X1000/106X250=0.1

Volume of water added i.e $x=V_1 (M_1 M_2)/M_2$

=10 (0. 1-0.001)/0.001=990ml

25) In acidic medium, dichromate ion oxidizes ferrous ion to ferric ion. If the gram molecular weight of potassium dichromate is 294 gram, its gram equivalent weight is (in grams)

1)2942) 1473) 494) 24.5

Solution: in acid medium change in ox. state per molecule of dichromate=6 GEW=GMW/6=294/6=49

26) Which of the follow	wing is more concent	trated?					
1)1% <i>H</i> ₃ <i>PO</i> ₄	2) 1M <i>H</i> ₃ <i>PO</i> ₄	3) 1m H_3PO_4 4	4)1N H ₃ PO ₄				
27) Molarity of 1 %(W/V) H_2SO_4 solution is approximately							
1)2.5.1	2) 1	3) 0.18	4) 0.1				
Solution: M= (w/v)	% X10/GMW =1X10	0/98=0.102M					
28) What volume of 0.	8M solution contain	s 0.4 mole of solute?					
1)100 ml	2) 125 ml	3) 500 ml	4) 62.5 ml				
Solution: M=n/V in	lit or V in lit=n/M=	0.4/0.8=0.5lit=500ml	\ •				
29) Equivalent weight	of a trivalent metal	is 9. The molecular we	eight of its oxide is				
1)75	2) 36	3) 51	4) 102				
Solution: GAW of	metal= GEWX valen	cy =9X3=27, as metal	is trivalent, its oxide				
is M ₂ O _{3.}							
GMW of $M_2O_3 = 2X$	X 27 +3X16=102						
30) 0.5 mole of <i>H</i> ₃ <i>PO</i> ₄	is dissolved in suffic	cient water and made	upto 500ml in a				
standard flask. The concentration of the solution is							
1)0.5 M	2) 1 m	3) 1 M	4) 1 N				
Solution: M=nX1000/V in ml=0.5X1000/500 =1M							
31) Which of the following method of expressing concentration is independent of							
temperature and l	nave no units?						
1) Molality	2) Mole fraction	3) Molarity	4) Normality				
32) Equivalent weight	t of <i>KMnO</i> 4 in neutra	al medium is					
1) M/3	2) M/1	3) M/5	4) M/6				
33) Number of equivalents in 98gm H ₃ PO ₃ is							
1)2	2) 1	3) 3	4) 1/2				
34) With increase in temperature both normality and molarity of a solution							
1) Decreases	2) Increases	3) Remains same	4) Doubles				

35) When a solution	is diluted n times, the	e molarity and normal	ity			
1) Decreases by 2	2n times	2) Decreases by	2) Decreases by n times			
3) Decreases by 1	n/2 times	4) Increases by	n times			
Hint: N or M inv	ersely proportion to vol	ume.				
36) An example fo	r gas in solid solution	is				
1) Alloy		2) Occlusion of	H_2 in pd			
3) Soda water		4) Iodine in air	4) Iodine in air			
37) A solution who	ose concentration is ex	actly known is called	G			
1) Centimolar sol	lution	2) Saturated sol	ution			
3) Standard solut	ion	4) Any of the al	4) Any of the above			
38) More convenie	ent method of expressi	ng concentration is				
1) Molarity	2) Normality	3) % by weight	4) All of these.			
39) 100ml of <i>CH</i> ₃ <i>OH</i>	(d = 0.32 g/ml) was t	aken in a 1000ml flask	x and water is added			
upto the mark t	o prepare solution. Th	e molarity of solution	is (volumes are			
additive)		O				
1)1	2) 2	3) 0.1	4) 0.5			
Solution: wt of so	olute=VXd=100X0.32=	-32gm				
M=wt X1000/GN	AWXV in ml= 32X100	0/32X1000 = 1M				
40) The molarity of r	esulting solution form	ned by mixing equal vo	olumes of 1M HCl			
and 1M HNO ₃ and	re					
1)2	2) 1	3) 1.5	4) 2.5			
Solution: $M = \frac{M_1}{(}$	$\frac{V_{1} + M_{2}V_{2}}{V_{1} + V_{2}} = \frac{1 \times V + 1 \times V}{V + V} = 1M$					
41) 0.6g of a metal carbonate is neutralized by 300ml of centimolar HCl solution.						
The equivalent v	veight of metal carbon	ate is				
1)100	2) 50	3) 150	4) 200			
Solution: wt of metal carbonate/GEW = $N_a XV_a$ in lt						
0.6/G	EW=0.01X300/1000,	\therefore GEW = 200				

42) A solution is label	ed as 10N. To prej	pare 100ml of 0.1N solu	ition, the volume of
water to be adde	d to the concentra	ted solution is	
1) 90 ml	2) 99 ml	3) 990 ml	4) 1 ml
Solution: $V_1 N_1 =$	$V_2 N_2$, $V_1 = 100 X 0$	0.1/10=1ml	
\therefore Volume of wa	ter added= V_2 - $V1$ =	100-1=99ml	
43) The solubility of a	a gas in liquid incre	eases with	
1) Increase in tem	perature		
2) Reduction of g	as pressure		6
3) Decrease in ter	nperature and increa	ase in gas pressure	
4) Amount of liqu	id taken.	. (
44) The volume of w	ater that must be	added to a mixture of	250ml of 6M HCl and
650ml of 3M HC	Cl to obtain 3M sol	ution is	
1) 75ml	2) 150ml	3) 300ml	4) 250ml
Solution: $M = \frac{1}{(V)}$	$\frac{M_1V_1 + M_2V_2}{V_1 + V_2 + vol.ofwater}$	90	
45) Equal volumes of	of 0.1 M NaNO ₃	and 0.2 M NaCl solu	tions are mixed. The
concentration of	nitrate ions in the	resultant mixture will	be
1) 0.1 M	2) 0.2 M	3) 0.05 M	4) 0.15 M
Solution: As equ	al volumes are mix	ted the vol. of solution is	s doubled.
$[NO_3^{-}]=0.1/2=0.1$	05N or M		
46) The following are	some statements a	about solution	
i) In a binary so ii) A homogenou iii) In a binary	lution, two compo is solution consists solution, compon	nents are present of two phases ent generally present	in higher amount is
known as solvent		sent generally present	ingrive universe is
			1
1) All are correct	•	2) Only (i) and	1 (11) are correct
3) Only (i) and (ii	1) are correct	4) (ii) and (iii)	are correct

47) Match the following	J.		
List-I	List-II		
A. Gas in Liquid	1. Camphor in Air		
B. Liquid in Gas	2. Bronze		
C. Liquid in Solid	3. Water in Air		
D. Solid in Solid	4. Oxygen in Water	C	O
	5. Amalgam	· · ·	
The correct answer is	8	ý,O`	
Α	В	c	D
1) 5	4	3	2
2) 1	2	3	4
4) 4	3	5	2
3) 2	4	1	3
48) 0.84g of metal carbon	ate reacts exactly with	40ml of $\frac{N}{2}$ H ₂ SO ₄ solut	ion.
Equivalent weight of	metal is		
1) 84g	2) 21g	3) 42g	4) 12g
Solution: wt of metal of	carbonate/GEW = N _a XV	V _a in lt	
0.84/GEW=0.5X40/10	$000, \therefore \text{ GEW of met}$	al carbonate = 42	
GEW of METAL= 42	- GEW of $CO_3^{-2} = 42-30$	=12g.	
49) Solubility of a solute i	n a solvent depends or	1	
1) Nature of solute	2) Nature of solvent		
3) Temperature	4) All the above		
50) Correct relation is			
1. Molarity x Eq.	Wt = Normality x Mol.	Wt	

- 2. Molarity x Mol.wt = Normality x Eq. Wt
- 3. Molarity x Normality = M.wt x Eq. Wt

$$\frac{Molarity}{M.wt} = \frac{Normality}{Eq.wt}$$

51) In acidic medium, molarity of 0.3N $K_2Cr_2O_7$ solution is

1)0.3	2) 0.05	3) 1.8	4) 0.15					
Solution: N=MX change in ox. State per mole, M=0.3/6=0.05								
52) The concent	ration of sulphate ions	in 0.1M potash alum s	olution is					
1) 0.4M	2) 0.3 M	3) 0.2 M	4) 0. 1 M					
Solution;	Formula of potash all	um is K_2SO_4 $Al_2(SO_4)$) ₃ 24H ₂ O.i molecule					
contains 4	sulphate ions. \therefore [SO4 ⁻⁷	²]=0.1X4=0.4						
53) In 46% (w/v	v) aqueous solution of e	ethyl alcohol the mole f	fraction of alcohol is					
1)0.5	2) 0.25	3) 0.75	4) 0.65					
Solution:	Solution: 46% w/w means 100gm solution contains 46gm of alcohol							
\therefore Wt of alco	\therefore Wt of alcohol= 46gm. Wt of water = 100-46=54gm.							
Moles of	Moles of alcohol=n=46/46=1 and moles of water i.e N=54/18=3							
\therefore Mole frac	\therefore Mole fraction of alcohol =n/n+N =1/1+3=0.25							
54) If 0.46g of Ethanol is dissolved in 1000 g of H_2O , the molality of the ethanol								
solution is	2							
1)0.1m	2) 0.02m	3) 0.2m	4) 0.01m					
Solution: Wt of ethanol (solute) =0.46g, Wt. of water (solvent) = 1000 g								
G.M. W of ethanol = 46 g								
Molalit	$\mathbf{y} = \left(\frac{\mathbf{W}}{\mathbf{G.M.W}}\right)_{\text{solute}} \times \frac{10}{\text{wt of solve}}$	$\frac{00}{\text{ent in gms}} = \frac{0.46}{46} \times \frac{1000}{1000} = 0.01 \text{m}$	1					
55) The molality of a 9.8% (w/w) solution of H_2SO_4 is								
1)1.1m	2) 2.2m	3)1m	4)2m					

Solution: 9.8% (w/w) solution means 9.8 g of the solute are present in 100g of solution.

We of solute = 9.8g, wt of solvent = 100-9.8 = 90. 2g
Molality =

$$\left(\frac{W}{G,MW}\right)_{star} \times \frac{1000}{wt.of solvent in gm} = \frac{9.8}{98} \times \frac{1000}{90.2} = 1.1m$$

56) The molality of 4% (w/v) NaOH solution having the density 1.02 g/ml. is
1)1.2m 2) 0.98m 3)1.02m 4)1m
Solution: 4% (w/v) NaOH solution contains 4g of NaOH is 100ml of the
solution.
Density of the solution = 1.02 g/ml
Wt of the solute in 100 ml of the solution = 4g
Wt of 100 ml of the solution = $100 \times 1.02 - 102g$
Wt. of solvent = Wt of solution - Wt of solute = $102 \times 4 = 98$ g.
 \therefore Molality = $\left(\frac{W}{G,MW}\right)_{star} \times \frac{1000}{wtof solvent in gms} = \frac{4}{40} \times \frac{1000}{98} = 102m$
57) 6 g of urea is mixed with 16. 2g of H2O the mole fraction of urea in the
mixture is
1) 6/22.2 2) 22.2/6 3) 0.9 4) 0.1
Solution: Mole fraction of $starea = \frac{n_{star}}{n_{star} + n_{star}} = \frac{\left(\frac{6}{60}\right)}{\left(\frac{6}{60} + \frac{162}{18}\right)} = \frac{-0.1}{-0.1}$
58) In a normal solution of BaCl2, normalities of Ba+2 and Cl - are in the ratio
1) 2(1 2) 1:2 3) 1:1 4) 2:3
Solution: BaCl2 \rightarrow , Ba+2 +2 Cl -
IN IN 2N
59) Match List-I With List-II
List-I List-II
A. Molarity i) no units

- B. Molality ii) gm. equivalents/lit
- C. Normality iii) mol/lit
- D. Mole fraction iv) moles/ kg. Solvent

v) gm. equivalents/ kg. Solvent

The correct match is

	А	В	С	D
1)	(iv)	(iii)	(ii)	(i)
2)	(iv)	(v)	(ii)	(i)
3)	(iii)	(iv)	(i)	(ii)
4)	(iii)	(iv)	(ii)	(i)

- 60) If 20 ml of 1M HCl solution is exactly neutralised by 10 ml of Ca (OH)₂ solution, the strength of Ca(OH)₂ in grams per litre of the solution is
 - 1) 37 2) 74 3)111 4)148

Solution: $^{2HCl + Ca(OH)_2} \longrightarrow CaCl_2 + 2H_2O$

$$\frac{\mathbf{M}_{1}\mathbf{V}_{1}}{\underset{(HCI)}{\mathbf{n}_{1}}} = \frac{\mathbf{M}_{2}\mathbf{V}_{2}}{\underset{(Ca(OH)_{2})}{\mathbf{n}_{2}}} \implies \frac{1 \times 20}{2} = \frac{\mathbf{M}_{2} \times 10}{1}, \ \mathbf{M}_{2} = 1.0M$$

Molarity of Ca $(OH)_2 = 1.0 \text{ M}$

Strength of Ca (OH)₂ solution = Molarity X M.wt = 1X74=74 g/litre.

- 61) A gaseous mixture contains four gases A, B, C and D. The mole fraction of "B" is 0.5. The mole fraction of "A" is
 1) 0.5252) 0.375 3) 0.625 4) 0.732
 Solution: As X_B=0.5, X_A+X_C+X_D=1-0.5=0.5 ∴ X_A<0.5
- 62) The maximum allowable level of carbon monoxide in air is 9mg per dm³, the level in ppm is
 - 1) 92) 183) 904) 900

Solution: 1 dm³⁼¹lit, 1mg/lit=1ppm

Key

1) 2	2)3	3) 1	4) 1 5	5) 3	6)3 7)	1 8)4	9)3	10)3
								n n
11)2	12)4	13) 3	14)3	15)1	16) 1	17)4	18) 3 19) 4	20)
21)2	22) 3	23)1	24)2	25)3	26)2	27)4	28)3 29)4	30)3
31) 2	32)1	33) 1	34) 1	35) 2	36)2 37) 3 38	3)1 39)1	40)2
41)4	42)2	43) 3	44)4	45)3	46) 3	3 47)3	48) 4 49) 4	50) 2
51)2	52) 1	53)2	54)4	55)1	56)3	57)4	58)2 59)4	60)2
61) 2	62)1		3					
	N	2						