Surface Chemistry

Adsorption Physisorption and Chemisorptions: Factors Affecting Adsorption of Gases on Solids

Level - I

Introduction - Adsorption

1. Adsorption is the phenomenon in which a substance

- 1. Accumulates on the surface of other substance.
- 2. Goes into the body of the other substances
- 3. Remains close to the other substances
- 4. Oxidises or reduces the other substances.

2. Adsorption is always

- 1. Endothermic
- 2. Exothermic
- 3. Accompanies with increase in entropy
- 4. Accompanies with increase of enthalpy

3. Which of the following is not considered as absorption?

- 1) Chalk piece dipped in ink
- 2) Sponge placed in water
- 3) Finely divided charcoal stirred in water dilute acetic acid
- 4) All the above

4. Sorption is

- 1) Bulk Phenomenon 2) Surface Phenomenon
- 3) Both 4) Dispersion

5.	Occlusion of gase	s by metals involves		
	1. Adsorption	2. Absor	ption	
	3. Sorption	4. Desor	ption	
6.	Which of the follo	owing substances act	as adsorbent	
	1) Silica gel	2) Metal	s	
	3) Colloids	4) All of	these	
7.	The colouring m	atter removed by an	imal charcoal during	purification of sugar
	acts as			C
	1. Adsorbate	2. Adsorbent	•	()
	3. Absorber	4. Catalyst		
8.	Surface layer of s	olid means		
	1) Atoms present i	n the upper layer of the	his solid.	
	2) Atoms present u	ip to a depth of 100nr	n on the surface.	
	3) Atoms present i	n the bulk of the solic	l.	
	4) Atoms of surface	e of solid not preocci	ipied by other substance	ces.
9.	In a chemical rea	ction the solid cataly	st function as	
	1) Adsorbent	(5)		2) Adsorbate
	3) Makes the react	ion mixture homogen	eous	4) Micelle
10.	Separation of ine	rt gases involves the	process of	
	1) Absorbent	2) .	Adsorption	
	3) Desorption	4) (Chemisorption	
11.	Activated charcos	al is used in separati	ng noble gases in Dev	war's method. In this
	process activated	charcoal acts as		
	1. Absorber	2. 1	Adsorbent	
	3. Adsorbate	4. (Catalyst	
12.	The forces opera	nting between the a	adsorbate and the a	dsorbent in physical
	adsorption are			
	1. Van der Waals	forces 2.	Chemical forces	

3. Covalent forces

4. All the three

13. Physical adsorption is

1. Reversible

2. Decreases with increase in temperature

3. Multi layer

4. All of these

14. Physical adsorption is useful in

- 1) Producing colorless material
- 2) Producing low pressure
- 3) Producing high vacuum
- 4) All of these

15. Physical adsorption is appreciable at

1. High temperature

- 2. Low temperature
- 3. At room temperature
- $4.100^{0} \, \mathrm{C}$

16. Which statement is correct?

- 1) Physical adsorption is multi-layer non directional and non-specific.
- 2) Chemical adsorption is unilayer.
- 3) Chemical adsorption is more stronger than physical adsorption.
- 4) All the above.

17. Which of the following is not a characteristic of chemisorption?

- 1) It is irreversible
- 2) It is specific
- 3) It is multi layer phenomenon
- 4) Heat of adsorption is about 400 KJ

18. Heat evolved during chemisorption lies in the range of

- 1) 4-20 kJ/mole
- 2) 40-400 KJ/mole
- 3) 20-40 KJ/mole
- 4) 500-1000KJ/mole

19. Which of the following is not a correct statement?

1. Physical adsorption is reversible in the nature.

- 2. Physical adsorption involves Van der Waal's forces.
- 3. Rate of Physical adsorption increases with increase of pressure of the adsorbate.
- 4. High activation energy is involved in the physical adsorption.

20. Valence forces cause

1) Chemisorptions

2) Physical Adsorption

3) Sorption

4) Adsorption involving multi layer

21. Which of the following is not a characteristic of chemisorptions?

- 1. Adsorption is irreversible
- 2. Is of the order of 400 K.J
- 3. Adsorption is specific
- 4. Multilayered

22. In a spontaneous adsorption process

- 1. Is sufficiently negative
- 2. Is positive

3. Is zero

4. All the above

23. The rate of chemisorptions

- 1. Decrease with increase of pressure
- 2. Is independent of pressure
- 3. Is maximum at one atmospheric pressure
- 4. Increase with decrease of temperature

24. Chemisorptions involves

1. Multi layered

2. Unilayered

3. Zero layered

4. Bi layered

25. Which is more selective?

- 1) Physical adsorption
- 2) Sorption
- 3) Van der Waal's adsorption
- 4) Chemisorptions

Factors Influence Adsorption

26. The extent of adsorption of a gas on a solid depends on

1. Nature of gas

2. Pressure of gas

3. Temperature

4. All the above

27. Conditions favourable for high adsorption are

- 1. Low pressure and high temperature
- 2. High pressure and low temperature
- 3. Large surface area
- 4. Both 2 and 3.

28. The extent of adsorption from solution increases with

- 1. Increasing the temperature
- 2. Increasing the surface area of the adsorbent
- 3. Decreasing the surface area of the adsorbent
- 4. Decreasing the concentration of the solute

29. The extent of adsorption from solutions decreases with

- 1. Decrease of temperature
- 2. Increase of surface area
- 3. Increase of temperature
- 4. Increasing the concentration of the solute

30. Which one of the following is the correct statement?

- 1. Chemisorption is reversible in nature.
- 2. Chemisorption is high at low temperature.
- 3. Chemisorption depends on the nature of gas.
- 4. Chemisorption does not depend upon the nature of the gas.

31. Chemical adsorption

- 1. Decreases with increase of temperature
- 2. Increase with increase of temperature
- 3. First increases and then decreases with increase of temperature
- 4. First decreases and then increases with increase of temperature

32. Extent of adsorption during chemisorption depends upon

1. Adsorbate

- 2. Adsorbent
- 3. Both adsorbate and adsorbent
- 4. Neither adsorbate nor adsorbent
- 33. During the adsorption of acetic acid on porous charcoal from acetic acid aqueous solution, its concentration
 - 1. Increases

2. Decreases

3. Remains the same

- 4. First increases and then decreases
- 34. The nature of forces operating between the adsrobate and the adsorbent in the adsorption occurring at high temperature is
 - 1. Van der Waals forces
- 2. Chemical forces
- 3. Gravitational forces
- 4. Fermi forces
- 35. Chemisorption of gas on solid does not depend on
 - 1) Pressure of gas.
 - 2) Temperature
 - 3) Nature of Adsorbate
 - 4) Nature of Adsorbent

Adsorption-Isotherms

36. According to Freundlich adsorption isotherm, at high pressure, the value of $\frac{x}{x}$

is

- 1. Directly proportional to pressure
- 2. Inversely proportional to pressure
- 3. Directly proportional to square of pressure
- 4. Independent of pressure
- 37. The mathematical equation relating x, m and p that represents Freundlich isotherm.

$$1) \frac{x}{m} = \frac{k}{p}$$

2)
$$\frac{x}{m} = KP^{\frac{1}{n}}$$
4)
$$\frac{x}{m} = \log p^{n}$$

3)
$$\frac{m}{x} = \frac{k}{p}$$

4)
$$\frac{x}{m} = \log p^n$$

38. Freundlich adsorption isotherm in the logarithmic form is

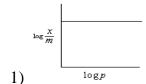
$$1. \ \frac{1}{n} \log P = \log \left(\frac{x}{m}\right) + \log K$$

$$2. \log K = \log P + \frac{1}{n} \log \left(\frac{x}{m}\right)$$

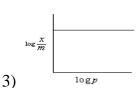
$$3. \log\left(\frac{x}{m}\right) = \frac{1}{n}\log K + \log P$$

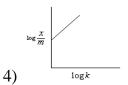
$$4. \log\left(\frac{x}{m}\right) = \frac{1}{n}\log P + \log K$$

39. The plot of $\frac{x}{m}$ Vs temperature at constant pressure is called

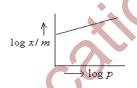

1. Adsorption Isotherm

2. Adsorption Isobar


3. Adsorption Isochore


4. Freundlich Isotherm

40. Which one of the following represents Freundlich adsorption isotherm?



$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

41. Freundlich adsorption isotherm is given by the expression

slope of the line in the following plot is

1)
$$\sqrt{n}$$
 2) $\frac{1}{n}$ 3) X/m 4) P

$$(3) X/m = 4$$

42. The equation for Langmuir adsorption isotherm under high pressure is

1)
$$\frac{x}{m} = \frac{a}{b}$$

$$2) \qquad \frac{x}{m} = aF$$

3)
$$\frac{x}{m} = \frac{1}{aP}$$

4)
$$\frac{x}{m} = \frac{b}{a}$$

43. In Langmuir's Adsorption of a gas on solid surface

- 1) The rate of desorption of adsorbed molecules from the surface does not depend on the surface covered
- 2) The adsorption at a single site on the surface may involve multiple molecules at the same time
- 3) The mass of gas striking a given area of surface is proportional to the pressure of the gas.

	4) The mass of gas	s striking a giv	ven area of surfa	ce is independent of the press	ure of
	the gas.				
44.	Which of the follo	wing is less t	han zero during	g adsorption?	
	1) Δ <i>G</i>	2) Δ <i>S</i>	3) Δ <i>H</i>	4) All of these	
45.	If 4g of nitrogen is	s allowed to a	adsorb at 300K	and 0.8atm on 2g of solid su	rface.
	Calculate the amo	ount of N2 Ac	lsorbed per gra	m of solid	
	1) 1	2) 2	3) 3	4) 4	•
46	Adsorption explai	ns all the foll	owing except	C	
	1. Origin of charge	on colloids		()	
	2. Decolourization	of sugar solut	tion on charcoal	0	
	3. Efficiency of fin	ely divided m	etals as catalyst		
	4. Action of enzym	nes		0-	
47	A poisonous gas is	s adsorbed or	n activated char	coal. The activated charcoal	is
	1. Absorber	2	2. Adsorbate	*	
	3. Adsorbent	4	Absorption		
48	Which of the follo	wing is not b	ased on adsorpt	tion?	
	1. Catalysis	(6)	2. Chromatograp	ohy	
	3. Photography	1	4. Decolourisation	on of sugar	
49	When adsorption	of Oxalic	acid is carried	out on activated charcoa	l, the
	activated charcoa	l is known as			
	1. Adsorbate	2	. Adsorbent		
	3. Absorber	4	. Absorption		
50	In washing proces	ss the surface	active detergen	nts function as	
	1) Adsorbate	2)) Desorber		
	3) Adsorbent	4)) Deactivator		
51.	Which is used to a	emove colou	r from raw can	e sugar juice?	
	1) Alumina	2)) Silica gel		

	3) Activated charcoal	4) Nickel powder
52.	When ammonia gas is enclos	sed in the presence of powdered charcoal in a closed
	vessel, the pressure of the ga	s decreases. It is due to
	1. Absorbate	2. Adsorption
	3. Decomposition	4. Catalytic action of charcoal
53.	Chromatographic analysis	finds a number of applications in analytical and
	Industrial fields, based on th	ne principle of
	1) Chemical adsorption	
	2) Physical adsorption	
	3) Hydrogen bonding	
	4) Sedimentation	
54.	When water vapour is passe	d through silica gel, water vapour is
	1. Absorbate	2. Adsorbed
	3. Cooled	4. Decomposed
55.	Adsorption plays an importa	ant role in
	1. Heterogeneous catalysis	2. Homogeneous catalysis
	3. Positive catalysis	4. Negative catalysis
56.	Assertion (A): Adsorption is	s a surface phenomenon.
	Reason (R): Adsorption is a	n endothermic process.
	1) A and R are correct and R i	s the correct explanation of A.
	2) A and R are correct and R i	s not the correct explanation of A.
	3) A is true and R is false.	
	4) A is false and R is true.	
57.	Which one of the following s	tatements is not applicable to chemisorptions?
	1) It is highly specific.	
	2) It is practically independent	t of pressure.
	3) It is irreversible.	

4) It is independent of temperature.

58. Which of the following is chemisorptions?

- 1. Adsorption of H₂on Ni at high temperature.
- 2. Adsorption of H₂on charcoal.
- 3. Adsorption of moisture on silica gel.
- 4. Hydration of anhydrous CaCl₂
- 59. Assertion (A): Chemical adsorption is unilayered where as physical adsorption is multilayered.

Reason (R): In chemical adsorption strong chemical bonds are forming between adsorbent and adsorbate where as it is not possible in physical adsorption.

- 1) A and R are correct and R is the correct explanation of A.
- 2) A and R are correct and R is not the correct explanation of A.
- 3) A is true and R is false.
- 4) A is false and R is true.
- 60. Assertion (A): Physical adsorption is reversible while chemical adsorption is irreversible

Reason(R): Physical adsorption is multilayered while chemical adsorption is unilayered one.

The correct answer is

- 1) A and R are correct and R is the correct explanation of A.
- 2) A and R are correct and R is not the correct explanation of A.
- 3) A is true and R is false.
- 4) A is false and R is true.
- 61. Which of the following can absorb large volume of hydrogen gas?
 - 1. Pd
- 2. Ni
- 3. $Fe(OH)_3$
- 4. Pt

62	The temperature above which a g	as cannot be liquef	ied even on application of				
	high pressure is called as						
	1) Boiling point	2) Freezing point					
	3) Critical temperature	4) Boyle's tempera	ture				
63.	The higher the critical temperatu	re of the gas					
	1) Greater is its adsorption.						
	2) Lower its adsorption.		-0				
	3) Lesser is the case of liquification	n.	C				
	4) Lesser is its volatile nature.		•				
64.	Which gas can be adsorbed more	?	'O'				
	1) Gas with high critical temperatur	re					
	2) Gas which can be liquefied easily	y 60					
	3) Gas with low critical temperature						
	4) Both 1 and 2						
65	Which of the following gases is ad	lsorbed easily and r	nore on activated charcoal				
	1. CH_4 2. CO_2	3. <i>SO</i> ₂	4. <i>H</i> ₂				
66	The gas which gets easily and exte	ensively adsorbed a	t low temperature				
	1. <i>H</i> ₂ 2. <i>CO</i> ₂	3. <i>N</i> ₂	4. <i>o</i> ₂				
67	The least readily adsorbed gas an	nong the following i	s				
		3. <i>HCl</i>					
68	The correct order of extent of ads	sorption on 1 gm of	an activated charcoal is				
	1. $H_2 > SO_2 > CH_4$ 2. $CH_4 > SO_2 >$	H_2 3. $SO_2 > CH$	$_{4} > H_{2}$ 4. $SO_{2} > CH_{4} < H_{2}$				
69	Activated charcoal is prepared by						
	1) Heating charcoal at 573 K to 127		n the presence of inert gas.				
	2) Irradiating the charcoal with neur						
	3) Washing the charcoal with water						
	4) All are correct.						
	<i>'</i>						

Key

Level-I

1) 1	2) 2	3) 4	4) 3	5) 3	6) 4	7) 2	8) 2	9) 1	10) 2
11) 2	12) 1	13) 4	14) 4	15) 2	16) 4	17) 3	18) 2	19) 4	20) 1
							O_{\prime}		
21) 4	22) 1	23) 2	24) 2	25) 4	26) 4	27) 4	28) 2	29) 3	30) 3
					. (-10			
31) 3	32) 3	33) 2	34) 2	35) 1	36) 1	37) 2	38) 4	39) 2	40) 3
)				
41) 2	42) 1	43) 3	44) 4	45) 2	46) 4	47) 3	48) 3	49) 2	50) 3
	> -	> -					 0.4		-0.
51) 3	52) 2	53) 2	54) 2	55) 1	56) 3	57) 4	58) 1	59) 1	60) 1
(1) 1	(2) 2			<i>(5)</i> 0	<i>((</i>) 2		60)		0) 1
61) 1	62) 3	63) 1	64) 4	65) 3	66) 2	67) 4	68) 3	6	9) 1
		•							
	13								
	1								
11.									

Catalysis Homogenous and Heterogeneous Activity and Selectivity, Enzyme Catalysis

1. A catalyst is a substance which

- 1. Increases the energy of activation
- 2. Decreases the energy of activation
- 3. Does not change the energy of activation
- 4. Energy of activation first increases and then decreases

2. When a catalyst is used in a reaction, then

- 1. Nature of products changes
- 2. Product yield increases
- 3. Product yield decreases
- 4. Time required for reaction decreases

3. Which is not a characteristic of a catalyst?

- 1. It changes the equilibrium.
- 2. It alters the reaction path.
- 3. It increases the rate of reaction.
- 4. It increases the average kinetic energy of the molecules.

4. According to adsorption theory of catalysis the speed of the reaction increases because

- 1) The concentration of reactant molecules at the active centre of the catalyst becomes high due to adsorption.
- 2) In the process of adsorption the activation energy of the molecules becomes large.
- 3) Adsorption produces heat which increases the speed of the reaction.
- 4) Adsorption lowers the reaction temperature.

5. The efficiency of the catalyst depends upon

1. Molecular weight

2. Physical state

	3. Number of free vale	encies	4. Amount	used	
6.	The temperature at	which the ca	atalytic activ	ity of the cat	alyst is maximum is
	called				
	1. Critical temperature	2	2. Room ter	nperature	
	3. Optimum temperatu	ıre	4. Absolute	temperature	
7.	Which of the following	ng catalyst is	sensitive to t	temperature c	changes?
	1. Fe 2	2. Pt	3. Ni	4. Enzyme	-0
8.	Which of the following	ng statement	is wrong am	ong the follov	ving?
	1. Haber's process of	NH ₃ requires	iron as cataly	rst	()
	2. Friedel-Craft's react	tion uses anhy	drous AICI ₃		
	3. Hydrogenation of o	ils uses iron a	s catalyst		
	4. Oxidation of SO_2 to		•	-10	
9.	The formation of die	-	- '	catalysed by	
•	1. H_2SO_4 170°C	_	Al_2O_3 250°C	readily sear sy	
	- '	*			
	3. H ₂ SO ₄ , 40°C	4. 7	Al ₂ O ₃ , 80° C		
10.	When sucrose is hydr	rolysed with	invertase en	zyme the prod	lucts are
	1. Glucose 2	2. Fructose	3. Bo	oth	4. Maltose
11.	In a homogeneous ca	talysis the ca	talyst and th	ie reactants ai	re in the same
	1. Condition	2.Phase	3.Er	nergy	4.System
12.	Which one of the foll	owing is not	an example (of homogeneo	us catalysis?
	1. Formation of SO ₃ i	n lead chambe	er process		
	2. Formation of SO ₃ i	n contact proc	cess		
	3. Hydrolysis of an est	ter in presence	e of an acid		
	4. Hydrolysis of sugar	in presence o	of sulphuric a	cid	
13.	Which of the following	ng is not invo	lved in a het	erogeneous ca	ntalysis?
	1) Adsorption of react	ants.			

- 2) Diffusion of reactants along the surface
- 3) Reaction at the active site to form adsorbed product.
- 4) Decomposition of the catalyst

14. Which statement is wrong for heterogeneous catalysis?

- 1. Adsorption of reactants
- 2. Diffusion of products
- 3. Reaction at an active site to form product
- 4. Absorption of the product
- 15. Catalyst used in the manufacture of HNO₃ by Ostwald's process is
 - 1. Rh
- 2. Pd

- 3. Fe
- 4. Pt
- 16 If Pt is used as catalyst in the decomposition of, H_2O_2 then it is an example of
 - 1. Homogeneous catalysis
 - 2. Heterogeneous catalysis
 - 3. Negative catalysis
 - 4. Auto catalysis

17. Which is an example of auto catalyst?

- 1) Hydrolysis of ethyl acetate
- 2) Decomposition of arsine
- 3) Oxidation of oxalic acid by acidified KMnO₄
- 4) All
- 18. In the titration between oxalic acid and acidified potassium permanganate, the manganous salt formed during the reaction catalyses the reaction. The manganous salt acts as
 - 1) A promoter 2) A positive catalyst 3) An auto catalyst 4) Catalytic poison
- 19. In the reaction

$$2KMnO_4 + 3H_2SO_4 + 5H_2C_2O_4 \rightarrow$$

Product, Mn^{+2} acts as

- 1. Positive catalyst 2. Negative catalyst
- 3. Auto Catalyst 4. Induced catalyst
- 20. In the hydrolysis of an ester, the reaction is catalysed by the acetic acid formed. It is an example of
 - 1. Autocatalysis

- 2. Positive catalysis
- 3. Anticatalyst or catalysis
- 4. Positive catalyst
- 21. When KClO₃ is heated, it decomposes into KCl and O_2 . If some MnO_2 is added, the reaction goes much faster because
 - 1. MnO₂ decomposes to give oxygen
 - 2. MnO₂ provides heat
 - 3. Better contact is provided by MnO₂
 - 4. MnO₂ acts as catalyst
- 22. A finely divided state of the catalyst is more efficient because in this state
 - 1. More surface area is available.
 - 2. More energy is stored in the catalyst.
 - 3. Positive charge is acquired.
 - 4. Negative charge is acquired.
- 23. In a reversible reaction, a catalyst increases the rate of
 - 1. Forward reaction only
 - 2. Backward reaction only
 - 3. Forward and Backward reactions equally
 - 4. Cannot participate in a reaction
- 24. A catalyst works well in powdered state, because
 - 1. No of active centers decreases
 - 2. No of active centers increases
 - 3. Surface area decreases
 - 4. It contains smooth surface

25.	Which of the following statem	ents is not true?					
	1. The action of the catalyst is specific						
	2. The catalyst does not alter the equilibrium						
	3. A small amount of the cataly	st is sufficient to catalyse large amounts of reactants					
	4. The catalyst initiates the reac	tion					
26.	The substance which reduces	or even destroys the activity of a catalyst is called					
	1. Auto catalyst	2. Catalytic poison					
	3. Negative catalysis	4. Enzyme catalysis					
27	Catalytic poison acts by						
	1. Its reaction with product						
	2. Its reaction with reactant						
	3. Getting adsorbed on the activ	ve centers of the catalyst					
	4. Coagulating the catalyst						
28.	Tetra ethyl lead increases the	anti knocking property of petrol. Here it acts as					
	1. Positive catalyst	2. Negative catalyst					
	3. Auto catalyst	4. Induced catalyst					
29.	Which of the following exhibit	ts specific activity in a catalytic reaction?					
	1) Catalyst	2) Promoter					
	3) Catalyst poison	4) All the three					
30.	In contact process of manufac	cture of in presence of H_2SO_4 Pt as catalyst, As_2O_3					
	acts as						
	1. Negative catalyst	2. Inhibitor					
	3. Catalytic poison	4. Promoter					
31.		nposition of Arsene to Arsenic and H_2 is					
-	1) As_2O_3 2) As	3) H_2 4) As					
	2) 113	5/112 1/135					

In the Haber's	process for t	he manufact	ure of, the	e following catalyst	t is used		
1. Platinised ash	1. Platinised asbestos						
2. Iron with mo	2. Iron with molybdenum as promoter						
3. Copper oxide	;						
4. Alumina							
Protons acceler	rate the hydr	olysis of este	rs. This is	s an example of			
1. A promoter					O_{I}		
2. A heterogene	ous catalyst			C			
3. An acid-base	catalyst			(,			
4. An induced c	atalyst			.:O'			
In the decompo	osition of H ₂ C	o_2 which of th	e followin	ng acts as negative	catalyst		
1) MnO ₂ 2) 0	Glycerol	3) Al_2O_3	4) Iron	0			
CH ₃ CHO in vapo	our phase un	der goes dec	compositio	on in the presence	of I ₂ vapour		
and gives.							
1) Acetic acid	2) Ethyl	alcohol					
3) Only CH_4	4) <i>CH</i> ₄	& CO					
For a reaction	occurring on	the surface	of a cataly	yst, the rate			
1) Decreases wi	th surface are	a					
2) Does not cha	nge with surfa	ace area.					
3) Increases with surface area							
4) May increase	or decrease of	depending on	the nature	of reaction			
In the Ostwald	process for t	the manufact	ture of HN	O_3 , the catalyst use	ed is		
1. Fe	2. Pt	3. V_2	O_5	4. Mo			
Which of the fo	ollowing acts	as negative o	catalyst?				
1 Lead tetra eth	vyl og ontilmo	.1					
1. Lead tella ell	iyi as antiknoo	ck compound					
	1. Platinised ash 2. Iron with mod 3. Copper oxide 4. Alumina Protons acceler 1. A promoter 2. A heterogene 3. An acid-base 4. An induced composition 1) MnO ₂ 2) CH ₃ CHO in vaposition and gives. 1) Acetic acid 3) Only CH ₄ For a reaction 1) Decreases wit 2) Does not cha 3) Increases wit 4) May increase In the Ostwald 1. Fe Which of the form	1. Platinised asbestos 2. Iron with molybdenum as particles and gives. 1. A cetic acid 2) Ethyl 3) Only CH_4 4) CH_4 6 For a reaction occurring on 1) Decreases with surface area 2) Does not change with surface area 4) May increase or decrease 6 In the Ostwald process for the surface area 2. Pt Which of the following acts	1. Platinised asbestos 2. Iron with molybdenum as promoter 3. Copper oxide 4. Alumina Protons accelerate the hydrolysis of ester 1. A promoter 2. A heterogeneous catalyst 3. An acid-base catalyst 4. An induced catalyst In the decomposition of H ₂ O ₂ which of the 1) MnO ₂ 2) Glycerol 3) Al ₂ O ₃ CH ₃ CHO in vapour phase under goes decomposition of the surface and gives. 1) Acetic acid 2) Ethyl alcohol 3) Only CH ₄ 4) CH ₄ & CO For a reaction occurring on the surface 1) Decreases with surface area 2) Does not change with surface area 3) Increases with surface area 4) May increase or decrease depending on In the Ostwald process for the manufact 1. Fe 2. Pt 3. V ₂ O ₂	1. Platinised asbestos 2. Iron with molybdenum as promoter 3. Copper oxide 4. Alumina Protons accelerate the hydrolysis of esters. This is 1. A promoter 2. A heterogeneous catalyst 3. An acid-base catalyst 4. An induced catalyst In the decomposition of H2O2 which of the following 1) MnO2 2) Glycerol 3) Al2O3 4) Iron CH3CHO in vapour phase under goes decomposition and gives. 1) Acetic acid 2) Ethyl alcohol 3) Only CH4 4) CH4 & CO For a reaction occurring on the surface of a cataly 1) Decreases with surface area 2) Does not change with surface area 2) Does not change with surface area 4) May increase or decrease depending on the nature In the Ostwald process for the manufacture of HN 1. Fe 2. Pt 3. V2O5 Which of the following acts as negative catalyst?	2. Iron with molybdenum as promoter 3. Copper oxide 4. Alumina Protons accelerate the hydrolysis of esters. This is an example of 1. A promoter 2. A heterogeneous catalyst 3. An acid-base catalyst 4. An induced catalyst In the decomposition of H_2o_2 which of the following acts as negative 1) MnO_2 2) Glycerol 3) Al_2O_3 4) Iron CH_3CHO in vapour phase under goes decomposition in the presence and gives. 1) Acetic acid 2) Ethyl alcohol 3) Only CH_4 4) CH_4 & CO For a reaction occurring on the surface of a catalyst, the rate 1) Decreases with surface area 2) Does not change with surface area 2) Does not change with surface area 4) May increase or decrease depending on the nature of reaction In the Ostwald process for the manufacture of HNO_3 , the catalyst use 1. Fe 2. Pt 3. V_2O_3 4. Mo Which of the following acts as negative catalyst?		

3. Ethanol in the oxidation of chloroform

4. All of the above

39. In which of the following reactions a catalyst is required

1. $S + O_2 \rightarrow SO_2$

- 2. $C + O_2 \rightarrow CO_2$
- 3. $2SO_2 + O_2 \rightarrow 2SO_3$
- 4. All of the above

40. In Lead-Chamber process the catalyst is

1. NO only

- 2. NO₂ Only
- 3. Mixture of NO & NO₂
- 4. N_2O_5

41. In which of the following process, a catalyst is not used

1. Haber process

- 2. Deacon's process
- 3. Solvay process
- 4. Lead chamber process

42. In Haber's process of Ammonia synthesis, the substance that acts as catalytic poison

1)
$$Fe_2O_3$$
 2) As_2O_3 3) CO_2 4) H_2S

43. Organic catalysts differ from inorganic catalysts

- 1. By acting at high temperature
- 2. By acting at low temperature
- 3. Being used up
- 4. Being protenious in nature

44. Platinum is not used as a catalyst in the

- 1) Oxidation of Hydrogen into water
- 2) Oxidation of SO2 by contact process
- 3) Oxidation of ammonia to Nitric Oxide
- 4) Synthesis of ammonia by Harbor's Process

45. The catalytic enzyme that converts glucose and fructose into ethyl alcohol in the presence of

- 1) Invertase
- 2) Diastase
- 3) Maltase
- 4) Zymase

46. Assertion (A): +Ve catalyst increases the rate of reaction.

Reason (R): +Ve catalyst decreases the activation energy of the reactants.

- 1) A and R are correct and R is the correct explanation of A.
- 2) A and R are correct and R is not the correct explanation of A.
- 3) A is true and R is false.
- 4) A is false and R is true.
- 47. Assertion (A): Catalyst is more effective in the powdered state.

Reason (R): In the powdered state surface area is maximum.

- 1) A and R are correct and R is the correct explanation of A.
- 2) A and R are correct and R is not the correct explanation of A.
- 3) A is true and R is false.
- 4) A is false and R is true.
- 48. The catalyst iron employed in the Haber's process contains molybdenum. Whose function is?
 - 1. To increase the rate of combination of gases.
 - 2. To counter balance for the presence of impurities in the gases.
 - 3. To act as a catalyst promoter and increase activity of catalyst.
 - 4. To make up for the adverse temperature and pressure conditions.

Types of catalysis

49. Which one of the following is not a homogeneous catalytic reaction?

- 1) Manufacture of H_2SO_4 by lead chamber process
- 2) Acid catalysed hydrolysis of ester
- 3) Inversion of cane sugar in the presence of mineral acid
- 4) Manufacture of H_2SO_4 by contact process

50. Catalysis in the oxidation of $SO_2 \Leftrightarrow SO_3$ in lead chamber process

- 1. Acid-base catalysis
- 2. Homogeneous catalysis
- 3. Heterogeneous catalysis
- 4. Induced catalysis

51. Match the following.

List - I

List - II

- A) Ammonia preparation
- 1. Bio catalysed

B) Hydrogenation

2. Fe

C) Fermentation

3. Ni

D)
$$SO_2 + \frac{1}{2}O_2 \xrightarrow{NO} SO_3$$

4) Homogeneous

A B C D

- 1) 4 3 1 2
- 2) 3 2 1 4
- 3) 1 2 4 3
- 4) 2 3 1 4

52. Which of the following types of metals make the most efficient catalysts?

- 1. Transition metals
- 2. Alkali metals
- 3. Alkaline earth metals
- 4. Radioactive metals

53. The catalyst used in the hydrogenation of oils is

- 1. V_2O_5
- 2. Fe

- 3. Co
- 4. Ni

Key

1) 2	2) 2	3) 1	4) 1	5) 3	6) 3	7) 4	8) 4	9) 2	10) 3
11) 3	12) 2	13) 4	14) 4	15) 4	16) 2	17) 4	18) 3	19) 3	20) 1
21) 4	22) 1	23) 3	24) 2	25) 4	26) 2	27) 3	28) 2	29) 4	30) 3
31) 2	32) 2	33) 3	34) 2	35) 4	36) 3	37) 2	38) 4	39) 3	40) 3
41) 3	42) 4	43) 2	44) 4	45) 4	46) 1	47) 1	48) 3	49) 4	50) 2
51) 4	52) 1	53) 4	C	VII.					
		5)						
5	W.								

Colloidal State: Distinction between True Solutions, Colliods and Suspensions, Lyophilic, Lyophobic, Multi Molecular, and Macromolecular Colloids

1.	Which of the fol	lowing is a	crystalloid?		
	1) Gum	2) Albu	min	3) Urea	4) Glue
2.	Which of the fol	lowing is n	ot a colloid?		
	1) Milk		2) Blood		~O,
	3) Ice Cream		4) Sugar Solution	on	U
3.	Crystalloid and	colloid can	be distinguished	by	*
	1) Diffusion		2) Particle Size		
	3) Chemical Con	nposition	4) Solubility		
4.	The particle size	of the solu	ite is less in	C'O.	
	1) Suspension		2) Colloid		
	3) True Solution		4) Same in all st	tates	
5.	Colloidal system	ıs are	.0		
	1) Homogeneous		2) Heterogeneou	us	
	3) Suspensions	10	4) Transparent		
6.	Example of a ho	mogeneou	s system is		
	1) Muddy Water	20.	2) Milk		
	3) Concrete		4) Sugar Solution	on	
7.	Which of the fol	lowing is a	clear solution?		
	1) Colloid		2) True solution	1	
4	3) Suspension		4) Suspensions	of precipitate	
8.	The number of J	phases in a	colloidal system i	S	
	1) 1	2) 2	3) 3	4) 4	
9.	A colloidal solut	ion always	has at least		
	1) One phase		2) More than tw	vo phases	

	3) A true solution	4) Two phases
10.	Particles of which of the foll-	owing do not pass through filter paper?
	1) Colloids	2) True Solutions
	3) Suspensions	4) Colloids and Suspension
11.	The particles of which of the	following do not diffuse at all?
	1) True solution	2) Colloid
	3) Suspension	4) Blood
12.	The tyndall effect in colloida	l solutions is due to
	1) Scattering of light	2) Reflection of light
	3) Absorption of light	4) Electrical charge of particles
13.	The Tyndall effect is not obs	erved in
	1) Emulsions	2) Lyophobic sols
	3) Suspensions	4) True solutions
14.	Which of the following is a h	nomogeneous system?
	1) Suspension	2) Colloid solution
	3) True solution	4) Starch solution
15.	A colloidal system in which	solid is dispersed in a liquid is called
	1) Precipitate	2) Sol 3) Emulsion 4) Gel
16.	When dispersed phase is s	solid and dispersion medium is gas, the colloidal
	system is	
	1) Smoke	2) Clouds
	3) Emulsion	4) Milk
17.	The colloidal system in whi	ch the dispersed phase and dispersion medium are
	both liquids is known as	
	1) A gel	2) An aerosol
	3) An emulsion	4) A foam

18.	When the dispersi	on medium is al	cohol, the colloid	al sol is known as
	1) Hydrosol		2) Benzosol	
	3) Alcosol		4) Aquasol	
19.	When dispersed p	hase is liquid aı	nd dispersion me	dium is a solid, the colloid is
	known as			
	1) A solution		2) An emulsion	
	3) A gel		4) A foam	-0)
20.	A colloidal solution	n in which a soli	d is dispersed in	a liquid is called
	1) Gel	2) Emulsion	3) Sol	4) Precipitate
21.	Milk is an example	e of		:O'
	1) Emulsion	2) Su	spension	
	3) Gel	4) Tr	ue solution	
22.	The dispersed pha	se in milk is		
	1) Water	2) Lie	quid fat	
	3) Protein	4) W	ater in oil	
23.	Gel is a sol			
	1) Liquid in solid	(2) So	olid in liquid	
	3) Solid in solid	4) So	olid in gas	
24.	An aerosol is a coll	loidal system of		
	1) A liquid disperse	d in a solid		
	2) A liquid disperse	d in a gas		
	3) A gas dispersed i	n a gas		
	4) A solid dispersed	l in liquid		
25.	Blood is a colloida	l solution of wat	er containing	
	1) Liquid fat as disp	persed phase		
	2) Albuminoid as d	ispersed phase		
	3) Butter as dispers	ed phase		

	4) Proteins as dispersed phase	e e e e e e e e e e e e e e e e e e e				
26.	. When the dispersed phase has a greater affinity for the dispersion medium, th					
	colloids are termed as					
	1) Lyophilic	2) Lyophobic				
	3) Hydrophobic	4) Emulsion.				
27.	7. Substances whose solutions can readily diffuse through animal membra					
	called as					
	1) Colloids	2) Crystalloids				
	3) Electrolytes	4) Non-electrolytes				
28.	In hydrosols water acts as					
	1) Colloidal particle	2) Dispersion medium				
	3) Suspensions only	4) Dispersed phase				
29.	Micelles contain					
	1) Discrete particles	2) Discrete ions				
	3) Aggregate of particles	4) Associated water molecules				
30.	Formula of sodium stearate	is				
	1) C ₁₂ H ₂₅ OSO ₃ Na	2) C ₁₂ H ₂₁ OSO ₃ Na				
	3) C ₁₇ H ₃₅ COONa	4) C ₁₇ H ₃₅ SO ₃ Na				
31.	When more sodium stearate	e is dissolved in water the nature of the solution is				
	1) True Solution	2) Suspension				
	3) Emulsion	4) Colloidal Solution				
32.	Medicinal Cod liver oil is an	n example of				
	1) Emulsion	2) Adsorbent				
	3) Aerosol	4) Gaseous Sol				
33.	Cold cream is an example o	f				
	1) Oil in water emulsion	2) Oil in oil emulsion				
	3) Water in oil emulsion	4) Emulsifier				

34.	Vanishing cream is an example of						
	1) O/W emulsion	2) Solid in a liquid sol.					
	3) W/O emulsion	4) Liquid in a solid sol.					
35.	The emulsifier for olive oil in water emulsion is						
	1) Soap	2) Egg albumin					
	3) Mercuric iodide	4) Kerosene					
36.	Soap emulsifies						
	1) Oil in water type	2) Water in oil type					
	3) Oil in oil type	4) Gel in oil					
37.	Water in benzene is emulsifi	ed by					
	1) Soap	2) Mercuric Iodide					
	3) Egg Albumin	4) Grease					
38.	The viscosity of a lyophylic s	sol isits dispersion medium					
	1) Equal to that of	2) Greater than that of					
	3) Less than that of	4) Exactly twice that of					
39.	Which is an aerosol?						
	1) Cloud 2) Blood	3) Milk 4) Gold sol					
40.	Which is prepared by Bredig	g's method?					
	1) Gold sol	2) Starch sol					
	3) Cod liver oil	4) Cold cream					
41.	Tyndall effect is shown by						
	1) Sugar solution	2) Common salt solution					
	3) Gold sol	4) Water					
42.	Dispersion medium in blood	is					
	1) RBC	2) WBC					
	3) Hemoglobin	4) Water					

43.	13. Which is a "W/O" type emulsion?						
	1) Cold cream	2) Milk				
	3) Blood	4) Cloud				
44.	Emulsifier in milk	is					
	1) Starch	2) Sucrose				
	3) Casein	4) Lactose				
45.	The hydrophobic	end of lauryl	sulphate is				
	1) C ₁₇ H ₃₅	2) C ₁₇ H ₃₃	C			
	3) C ₁₂ H ₂₅	4) -OSO3	<i>M</i> .			
46.	Vanishing cream i	S					
	1) Lyphilic sol	2) Lyophobic sol				
	3) W/O emulsion	4) O/W emulsion				
47. Concentrated soap solution consists of							
	1) Individual soap i	ons 2)	Micelles				
	3) Dimers of soap i	ons 4) Flat type patter	ns of soap ions			
48.	Which of the following may form associated colloids?						
	1) Gold	2) Soap	3) Starch	4) Glucose			
49.	Most common em	ulsifier for v	egetable oil in w	ater emulsion is			
	1) Carbon powder	2) HgI ₂				
	3) Soap	4) Lyphobic collo	id			
50.	Emulsifying agent	s are genera	lly				
	1) +ve ions	2) –ve ions				
	3) Lyophobic collo	ids 4) Lyophilic collo	ids			
51.	Which cannot act	as an emulsi	fier?				
	1) Soap	2) Egg albumin				
	3) Gelatin	4) Water				

52.	Micelle is						
	1) A single +ve ion	n	2) A sing	2) A single –ve ion			
	3) An aggregate of	f many soap ion	s 4) An inc	lividual molecule			
53.	In the colloidal state, the particle size ranges from						
	1) 1 to 10 A ⁰		2) 2000 t	o 5000 A ⁰			
	3) 10 to 1000 A ⁰		4) 100 -	1000 nm.			
54.	Particles in which	of the followi	ng can be seen onl	y with ultra microscope			
	1) True solutions		2) Colloi	ds			
	3) Suspensions		4) Both colloids and suspensions				
55.	The diffusion of p	oarticles in coll	oid is	JO'			
	1) Rapid than in true solution						
	2) Slower than in suspension						
	3) Slower than in true solution						
	4) Equal as in true	solution	0,				
56.	Weak tyndall effect can be observed with						
	1) Gold sol 2) Sulphur sol						
	3) Smoke 4) Starch sol						
57.	Smoke, cloud and	l gold sol are r	espectively				
	1) Aerosol, Hydrosol and Aquasol						
	2) Hydrosol, Hydrosol and Hydrosol						
	3) Aquasol, Aerosol and Hydrosol						
	4) Aerosol, Aerosol and Hydrosol						
58.	Which of the follo	owing is not a c	colloidal solution?				
	1) Smoke	2) Ink	3) Air	4) Blood			
59.	Curd is an examp	ole of					
	1) Solution	2) Foam	3) Aerosol	4) Gel			

60.	Fog is a colloidal solution	of				
	1) Liquid particles dispersed in gas					
	2) Solid particles dispersed in liquid					
	3) Gaseous particles dispersed in solid					
	4) Solid particles dispersed	in gas				
61.	Which is a natural colloid	?				
	1) Cane sugar	2) Urea 3) NaCl 4) Blood				
62.	Butter is a colloid. It is for	Sutter is a colloid. It is formed when				
	1) Fat is dispersed in solid c	1) Fat is dispersed in solid casein				
	2) Fat globules are dispersed	d in water				
	3) Water is dispersed in fat					
	4) Casein is suspended in w	ater				
63.	Which of the following colloid system contains solid as the dispersed phase?					
	1) Smoke	2) Clouds				
	3) Lemonade Froth	4) Boot Polish				
64.	Water loving colloids are o	called				
	1) Hydrophilic	2) Hydrophobic				
	3) Lyophobic	4) Lyophilic.				
65.	Which of the following is a	a hydrophilic solution?				
	1) Barium Hydroxide Sol	2) Arsenic Sulphide Sol				
	3) Starch Sol	4) Silver Chloride Sol				
66.	Colloidal solution of Arser	nic Sulphide is an example of				
	1) Lyophobic Sol	2) Hydrophilic Sol				
	3) Aerosol	4) Lyophilic Solution				
67.	Which of the following is a	an example for hydrophobic sol?				
	1) Starch Sol	2) Gum				
	3) Protein Sol	4) Arsenic Sulphide Sol				

Key

1) 3	2) 4	3) 1	4) 3	5) 2	6) 4	7) 2	8) 2	9) 4	10) 4
11) 3	12) 1	13) 4	14) 3	15) 2	16) 1	17) 3	18) 3	19) 3	20) 3
21) 1	22) 2	23) 1	24) 2	25) 2	26) 1	27) 1	28) 2	29) 3	30) 3
31) 4	32) 1	33) 3	34) 1	35) 2	36) 1	37) 2	38) 2	39) 1	40) 1
41) 3	42) 4	43) 1	44) 3	45) 3	46) 4	47) 2	48) 2	49) 3	50) 4
51) 4	52) 3	53) 3	54) 2	55) 3	56) 4	57) 4	58) 3	59) 4	60) 1
61) 4	62) 3	63) 1	64) 1	65) 3	66) 1	67	7) 4		