Solid State - 2

Density, Bragg's Equation, Crystal Defects and Properties of solids

1) Density of a crystal is given by
2) $\frac{a^{3} \times M}{z \times N_{o}}$
3) $\frac{z \times M}{a^{3} \times N_{o}}$
4) $\frac{N_{o} \times M}{z \times a^{3}}$
5) $\frac{a^{3} \times N_{o}}{z \times M}$
6) An element crystallizes in a structure having F.C.C. unit cell of an edge 200 pm . Calculate the density if $\mathbf{2 0 0} \mathbf{~ g m}$ of it contains 24×10^{23} atoms
7) $41.6 \mathrm{gm} / \mathrm{cm}^{3}$
8) $42.6 \mathrm{gm} / \mathrm{cm}^{3}$
9) $43.6 \mathrm{gm} / \mathrm{cm}^{3}$
10) $44.6 \mathrm{gm} / \mathrm{cm}^{3}$

HINT: mass of 24×10^{23} atoms $=200 \mathrm{gm}$, Mass of 6×10^{23} atoms $(M)=50 \mathrm{gm}$

$$
\rho=\frac{Z M}{N_{0} \cdot a^{3}}=4 \mathrm{X} 50 / 6 \times 10^{23} \mathrm{X}\left(200 \times 10^{-10}\right)^{3}=41.6 \mathrm{gm} / \mathrm{cm}^{3}
$$

3) A metal crystallizes in two cubic phases, fcc and bec whose unit cell lengths are $2^{\mathbf{0}} \mathrm{A}$ and $\mathbf{3 ~}^{\mathbf{0}} \mathrm{A}$ respectively. The ratio of density of fcc and bec is
4) 1.5
5) 3.375
6) 13.5
7) 6.75

Hint: $\frac{\rho_{1}}{\rho_{2}}=\frac{z_{1}}{z_{2}} \cdot \frac{\left(a_{2}\right)^{3}}{\left(a_{1}\right)^{3}}=\frac{4}{2} \times 3^{3} / 2^{3}=6.75$
4) Ice crystallises in a hexagonal lattice having volume of the unit cell as $132 \times 10^{-24} \mathrm{~cm}^{3}$. If density is $\mathbf{0 . 9 2 g}$ at a given temperature, then number of $\mathbf{H}_{\mathbf{2}}$ O molecules per unit cell is

1) 1
2) 2
3) 3
4) 4

Hint: $z=\frac{\rho . N_{0} . V}{M}=\frac{132 \times 10^{-24} X 6 \times 10^{23} X 0.92}{18}=4$
5) A metal crystallises as body centered cubic lattice with the edge length of unit cell equal to $\mathbf{0 . 3 0 4} \mathbf{~ n m}$. If the molar mass of the metal is $50.3 \mathrm{~g} \mathrm{~mol}^{-1}$, its density is

1) $5.945 \mathrm{~g} \mathrm{~cm}^{-3}$
2) $2.9725 \mathrm{~g} \mathrm{~cm}^{-3}$
3) $8.9175 \mathrm{~g} \mathrm{~cm}^{-3}$
4) $4.458 \mathrm{~g} \mathrm{~cm}^{-3}$

Hint: $\quad \rho=\frac{Z M}{N_{0} \cdot a^{3}}$, here $\mathrm{z}=2, \mathrm{a}=0.0304 \times 10^{-7} \mathrm{~cm}$
6) A element ' X ' crystallises as face centered cubic lattice with edge length of 460 pm . The density of the element X, when molar mass of X atom is 60 $\mathrm{gm} / \mathrm{mol}$ is

1) $4.096 \mathrm{gm} / \mathrm{mol}$
2) $2.048 \mathrm{gm} / \mathrm{mol}$
3) $6.144 \mathrm{gm} / \mathrm{mol}$
4) $3.072 \mathrm{gm} / \mathrm{mol}$

Hint: $\rho=\frac{Z M}{N_{0} \cdot a^{3}}$, here $\mathrm{z}=4, \mathrm{a}=460 \times 10^{-10}=4.6 \times 10^{-8}$
7) If the density of $\mathrm{NaCl}=2.165 \mathrm{~g} \mathrm{~cm}^{-3}$ and the distance between Na^{+}and $C l^{-}=281 \mathrm{pm}$, Avogadro's number is equal to

1) $7 \times 10^{23} \mathrm{~mol}^{-1}$
2) $8 \times 10^{23} \mathrm{~mol}^{-1}$
3) $6 \times 10^{23} \mathrm{~mol}^{-1}$
4) $3 \times 10^{23} \mathrm{~mol}^{-1}$
5) The ratio of'd' values in NaCl crystal is
6) $0.703: 1: 1.134$
7) $1: 1.34: 0: 703$
8) $1: 0.703: 1.134$
9) $0.703: 1.134: 1$
10) The second order Bragg diffraction of X-rays with $\lambda=1.00 \AA$ from a set of parallel planes in metal occurs at an angle of 60°. The distance between the scattering planes in the crystal is
11) $0.575 \AA$
12) $1.00 \AA$
13) $2.00 \AA$
14) $1.15 \AA$

Hint: $n \lambda=2 d \sin \theta, \mathrm{~d}=2 \mathrm{X} 1 / 2 \mathrm{X} \sin 60=1 / \sin 60=2 / \sqrt{3}=1.15$
10) From Bragg's equation which one of the following is wrong?

1) Incident angle value is in between 0 to 90°
2) Order of diffraction ' n ' is an integer
3) $2 d<n \lambda$
4) As λ of x-rays increases, incident angle for first order diffraction increases
5) At what angle for a first order diffraction, the distance between two adjacent planes of crystal is equal to the wavelength of X-rays used
6) 45^{0}
7) 30°
8) 90°
9) 60°

Hint: as $d=\lambda, \sin \theta=1 / 2$ i.e. $\theta=30$

www.sakshieducation.com

12) If two waves with the amplitude ' a ' of each undergo constructive interference, the amplitude of the resulting wave is
13) 0
14) $2 a$
15) $<2 \mathrm{a}$
16) a^{2}
17) Schottky defect causes
18) Increase in the density of solid
19) Decrease in the density of solid
20) No change in the density of solid
21) Decrease in the conductivity of solid.
22) What type of crystal defect is indicated in the diagram below?
23) Frenkel defect
24) Frenkel and Schottky defects
25) Interstitial defect
26) Schottky defect
27) Schottky - Wagner defects are mostly found in
28) Ionic compounds with high co-ordination number
29) Ionic compound with low co-ordination number
30) Covalent compounds with low coordination number
31) Covalent compound with high coordination number
32) Which among the following is likely to have Schottky defect?
33) Ag Cl
34) NaCl
35) TiCl
36) MgCl_{2}
37) A: During vacancy defect the density of solid decreases.
R : The vacancies in the lattice lower the density of solid.
1. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
3. If assertion is correct but reason is incorrect.

www.sakshieducation.com

4. If assertion is incorrect but reason is correct.
18) Schottky defect in crystals is observed when
19) Unequal number of cations and anions are missing from the lattice.
20) Equal number of cations and anions are missing from the lattice.
21) An ion leaves its normal site and occupies interstitial cells.
22) Density of the crystal is increased.
23) List - I

List - II
A) Crystal defect

1) Amorphous
B) Carborundum
2) Frenkel
C) Pitch
3) Covalent crystal

The correct match is

	A	B	C	A	B	C	
1)	3	1	2	$2)$	2	1	3
$3)$	2	3	1	$4)$	1	2	3

20) Which of the following is a "Berthollide Compound'?
21) MgO
22) $\mathrm{Al}_{2} \mathrm{O}_{3}$
23) $\mathrm{Na}_{2} \mathrm{O}$
24) ZrH_{2}
25) The formula of an oxide of iron is $\mathrm{Fe}_{0.93} \mathrm{O}_{1.00}$. If the compound has hundred O^{-} 2 ions, then it contains
26) $93 \mathrm{Fe}^{+2}$ ions 2) $93 \mathrm{Fe}^{+3}$ ions
27) $79 \mathrm{Fe}^{+2}, 14 \mathrm{Fe}^{+3}$
28) $93 \mathrm{Fe}^{+2}, 14 \mathrm{Fe}^{+3}$

Solution: Let the sample contains 93 iron ions \& 100 oxide ions
Total negative charge on oxide ions $=100 \mathrm{X}-2=-200$
No of $\mathrm{Fe}^{+3} \quad$ ions $=\mathrm{X}$
No of $\mathrm{Fe}^{+2} \quad$ ions $=93-\mathrm{x}$
Total positive charge $=x(+3)+(93-x)(+2)$
Numerically +ve charge and -ve charge are equal
Thus $3 x+(93-x) 2=200$
$\mathrm{x}=14$
22) To get n-type semiconductor, impurity to be added to silicon should have the following number of valence electrons

1) 2
2) 3
3) 1
4) 5
5) (A): With increase in temperature the conductivity of metals decreases. $(R):$ With increase in temperature lattice vibrations increases in metals.
1. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
3. If assertion is correct but reason is incorrect.
4. If assertion is incorrect but reason is correct.
24) The mechanism of electrical conductivity may be given in terms of
25) Vacancy mechanism
26) Interstitial mechanism
27) Interstitially mechanism
28) All
29) A: Metals are generally good conductors of electricity. R : Electrical conductivity of metals is due to Schottky type defects.
1. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
3. If assertion is correct but reason is incorrect.
4. If assertion is incorrect but reason is correct.
26). In which of the following the conductivity would be in the order of $10^{-4} \mathrm{ohm}^{-}$ $1 \mathrm{~cm}^{-1}$
1) $\mathrm{NaCl}_{(\mathrm{s})}$
2) Na (s)
3) Diamond
4) Ge
27). Which one of the following ratio gives the purity of the metal (-resistivity (or) specific resistance)?
5) $\frac{\rho_{300^{\circ} \mathrm{C}}}{\rho_{4.2^{\circ} \mathrm{C}}}$
6) $\frac{\rho_{300 \mathrm{~K}}}{\rho_{4.2 K}}$
7) $\frac{\rho_{27 K}}{\rho_{4 K}}$
8) $\frac{\rho_{300 \mathrm{~K}}}{\rho_{4^{\circ} \mathrm{C}}}$
9) Germanium can be made n-type semi conductor by doping with
10) Silicon
11) Arsenic
12) Gallium
13) Either AS (or) Ga
29. Which one of the following statements is wrong?
1) With increasing the temperature the electrical conductivity of Germanium decreases
2) Silicon doped with phosphorus is n-type semi conductor
3) Germanium doped with indium is p-type semi conductor
4) Doping increases the conductivity of semi conductor
5) The magnetic susceptibility of a substance can be expressed as
6) Gram susceptibility
7) Volume susceptibility
8) Molar susceptibility
9) All
10) A: Antiferromagnetic substances possess almost zero magnetic moment.
R : There are no unpaired electrons in anti ferromagnetic substances.
1. If both assertion and reason are correct, and reason is the correct explanation of the assertion.

www.sakshieducation.com

2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
3. If assertion is correct but reason is incorrect.
4. If assertion is incorrect but reason is correct.
32) Which of the following is correct statement?
33) Silicon doped with boron is n-type semiconductor
34) Silicon doped with arsenic is a p-type semiconductor
35) Metals are good conductors of electricity
36) Electrical conductivity of semiconductors decreases with increasing temperature
37) The general formula of ferrites is $\mathrm{MFe}_{2} \mathrm{O}_{4}$. Where ' M ' would not be
38) Mg
39) Cu
40) Al
41) Zn
42) $\quad \mathrm{A}: \mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right\}$ is diamagnetic

R : The alignments of magnetic dipoles are in compensatory to give zero magnetic moment

1. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
3. If assertion is correct but reason is incorrect.
4. If assertion is incorrect but reason is correct.
35) Which substance shows anti ferro magnetism?
36) ZrO_{2}
37) CdO
38) CrO_{2}
39) $\mathrm{V}_{2} \mathrm{O}_{3}$
40) $\mathrm{A}: \mathrm{Fe}_{3} \mathrm{O}_{4}$ is ferromagnetic at room temperature but becomes paramagnetic at 850 K .

www.sakshieducation.com

R: The magnetic moments in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ are aligned equally in parallel and anti parallel directions which on heating randomize.

1. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
3. If assertion is correct but reason is incorrect.
4. If assertion is incorrect but reason is correct.
37) The alignment of magnetic dipoles shown below represents which of the following?

$$
\uparrow \downarrow \downarrow \uparrow \downarrow \downarrow
$$

1) Diamagnetism
2) Ferri magnetism
3) Ferro magnetism
4) Anti-ferromagnetism
5) List - I
A) Antiferromagnetic
B) Covalent crystal
C) Ferrimagnetic

The correct match is
A B C

1) 231
$\begin{array}{cccc} & \text { A } & \text { B } & \text { C } \\ 2) & 3 & 2 & 1 \\ 4) & 1 & 3 & 2\end{array}$

List - II

1) $\mathrm{ZnFe}_{2} \mathrm{O}_{4}$
2) NiO
3) Diamond

	A	B	C		A	B	C
1)	2	3	1	$2)$	3	2	1
$3)$	1	2	3	$4)$	1	3	2

39) Which one of the following is correct?
40) Schottky defect lowers the density
41) Frenkel defect increases the dielectric constant of the crystals
42) Stoichiometric defects make the crystals good electrical conductors
43) All of these.
44) At zero kelvins, most of the ionic crystals possess
45) No defect
46) Frenkel defect
47) Schottky defect
48) Metal excess defect
49) (A): Schottky and Frenkel defects are also called as 'thermodynamic defects'. (R): Both Schottky and Frenkel defects increases with increase in temperature.
50) Both (A) and (R) are true and (R) is the correct explanation of (A).
51) Both (A) and (R) are true but (R) is not the correct explanation of (A).
52) (A) is true but (R) is false.
53) Both (A) and (R) are false.
54) The electrical conductivity of semiconductors
55) Increases with temperature
56) Decreases with temperature
57) Remains constant on heating
58) All the above.
59) Which substance will conduct the current in the solid state?
60) Diamond
61) Graphite
62) Iodine
63) Sodium chloride
64) To get p-type doped semiconductor, impurity to be added to silicon should have the following number of valence electrons
65) 1
66) 2
67) 3
68) 5
69) A diode is
70) npn or pnp type of semi conductor
71) Only n type of semi conductor
72) Only p type of semi conductor
73) Only npn type of semi conductor
74) Ferromagnetism is maximum in
75) Fe
76) Co
77) Ni
78) Equal in all
79) Assertion (A): Electrical conductivity of semiconductors increases with increasing temperature.
Reason (\mathbf{R}): With increase in temperature, large number of electrons from the valence band can jump to the conduction band.
80) Both (A) and (R) are true and (R) is the correct explanation of (A).
81) Both (A) and (R) are true but (R) is not the correct explanation of (A).
82) (A) is true but (R) is false.
83) Both (A) and (R) are false.
84) Assertion (A): $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is ferrimagnetic at room temperature but becomes paramagnetic at 850 K .
Reason (\mathbf{R}): The magnetic moments in are aligned equally in parallel and anti parallel directions which on heating randomize.
85) Both (A) and (R) are true and (R) is the correct explanation of (A).
86) Both (A) and (R) are true but (R) is not the correct explanation of (A).
87) (A) is true but (R) is false.
88) Both (A) and (R) are false.
89) X-rays of wavelength equal to 1.134 nm give a first order diffraction from the surface of a crystal when the value of θ is 10.5^{0}, then the distance between the adjacent plane in the crystal is $\left(\sin 10.5^{0}=\mathbf{0 . 1 8 2 2}\right)$
90) 367 mn
91) 0.367 nm
92) 3.67 nm
93) 0.0367 nm

Hint; 2d $\operatorname{Sin} \theta=\mathrm{n} \lambda$
50) In a diffraction experiment, x-rays of wavelength 0.14 nm were used on a crystal. ' \mathbf{n} ' is the order of diffraction that occurs at an angle of θ is 19.5^{0}. If the inter planar distance is $\mathbf{4 . 4 2} \mathbf{n m} \mathbf{n}$ value is $\left(\boldsymbol{\operatorname { s i n }} 19.5^{\circ}=\mathbf{0 . 3 3 3}\right)$

1) 2
2) 1
3) 3
4) 4

Hint: $2 \mathrm{~d} \operatorname{Sin} \theta=\mathrm{n} \lambda$

Kеу

1) 4
2) 2
3) 4
4) 4
5) 1
6) $1 \quad 7) 3$
8)3 9)4
10)3
7) 2 12) 2
13)2 14)4
8) 1
9) 2 17) 1
10) 2
11) $3 \quad 20) 4$
12) 3 22) 4 23) 1
13) 4 25) 3
14) 4 27) 2
15) 2 29) 1 30) 4
16) 3 32) 3 33) 3
17) 335) 4 36) 3 37) 2 38) $1 \quad 39) 4$
40)1
1) 4 42) 1 43) 2
2) 3 45) 1 46) 1 47)
48)1 49)2
50)1
