Solid State-1

1) Ionic solids are characterised by	1)	1) Ionic solid	ds are	charact	terised	by
--------------------------------------	----	----------------	--------	---------	---------	----

- 1) Good conductivity in solid state
- 2) High vapour pressure

3) Low melting point

4) Solubility in polar solvents

Three metals X, Y and Z are crystallised in simple cubic, B.C.C and F.C.C 2) lattices respectively. The number of unit cells in one mole each of the metals respectively

- 1) N, 2N, 4N
- 2) $N, \frac{N}{2}, \frac{N}{4}$ 3) $\frac{N}{4}, \frac{N}{2}, N$

HINT: the number of atoms per unit cell in simple cubic, B.C.C, and F.C.C are 1, 2, 4 respectively.

- The crystal system without any element of symmetry is 3)
 - 1) Monoclinic
- 2) Triclinic
- 3) Hexagonal
- 4) Cubic

Hint: cubic system is most symmetric and Triclinic is most unsymmetrical crystal systems.

How many unit cells are present in a cube-shaped ideal crystal of NaCl of 4) mass 1.00 g?

- 1) 2.57×10^{21} unit cells
- 2) 5.14×10^{21} unit cells
- 3) 1.28×10^{21} unit cells

4) 1.71×10^{21} unit cells

Solution: 234gm NaCl contains 6X10²³ unit cells. 1 g of NaCl contains =

$$\frac{6 \times 10^{23}}{234} = 2.57 \times 10^{21} \text{ unit cells}$$

An element having bcc structure has 12.08×10^{23} unit cells. The number of 5) atoms in these cells is

- 1) 12.08×10^{23} 2) 24.16×10^{23} 3) 48.38×10^{23} 4) 12.08×10^{22}

	Solution: No.01 atoms per b.c.c unit cen=2, The number of atoms in							
	12.08×10 ²³ unit ce	$lls = 12.08 \times 10^{23} \text{ M}$	$\mathbf{X2} = 24.16 \times 10^{23}$ unit of	cells				
6)	The number of lattice point per unit cell in B.C.C. and end centered lattice							
	respectively							
	1) 9, 10	2) 6, 6	3) 6, 8	4) 6, 10				
7)	In a close packed lattice containing 'n' particles, the number of tetrahedral							
	and octahedral voi	ds respectively						
	1) 2n, n	2) n, 2n	3) n, n	4) 2n, n/2				
8)	Which of the follow	ving is not true al	bout crystalline solids	? •				
	1) They are rigid an							
	2) They possess planes surfaces							
	3) They have definite geometric configuration							
	4) They are obtained	d by rapid cooling	of molten substances					
9)	A salt AB crystallises in the CsCl structure. The anions at the corners and the							
	cation in the centre	e hence, the limiti	ng radius ratio is					
	1) 0.225	2) 0.441	3) 0.625 4) 0.7	732				
10)	10) The coordination numbers of oxygen and silicon in SiO ₂ respectively							
	1) 1, 2	2) 2, 1	3) 4, 2	4) 2, 4				
11) The crystal system of a compound with unit cell dimension				ns a=0.387, b=0.387				
	and c=0.504nm and $\alpha = \beta = 90^{\circ}$ and $\gamma = 120^{\circ}$ is							
	1) Cubic	2) Hexagonal	3) Orthorhombic	4) Rhombohedral				
12)	Which of the follow	ving is not a cryst	talline solid?					
	1) KCl	2) CsCl	3) Glass	4) Rhombic sulphur				
13)	Which of the follow	ving is a molecula	ar solid?					
	1) ZnS	2) MgO	3) Diamond	4) Dry Ice				
14)	Which one has high	hest melting poin	t?					
	1) Ionic crystal	2) Molecu	lar crystal					
	3) Covalent crystal 4) Metallic crystal							

15)	For a covalent solid, the units which occupy lattice point are								
	1) Ion	1) Ions 2) Electrons		3) Atoms	3) Atoms 4) Molecules or at				
16)	The s	truc	tural un	it of a	erys	tal is	l is called		
	1) Str	uctui	ral motif	. 2	e) Ur	nit C	ell 3) Cry	stal Lattice	4) Space Lattice
17)	(Unit	(no of the atoms per unit cell)							
	A) bcc 1) 1								
	B) fcc 2) 2								
	C) Sin	mple	cube	3) 4	ļ				
	The c	orre	ect mate	h is					\sim
	A	В	C	A	В	C			
	1) 2	3	1	2) 2	1	3		XI	
	3) 3	1	2	4) 1	2	3			
18)	In which of following crystal system F.C.C unit cell exists?				s?				
	1) Cubic, hexagonal				71)	2) Orthorh	nombic, cubic		
	3) Tet) Tetragonal, orthorhombic 4) Tricilinic, monoclini				ic, monoclinic			
19)	Out of seven crystal systems how			how	many have	primitive u	nit cell?		
	1) 4		2) 2		X		3) 3	4) 7	,
20.	Which of the following crystallises in both hexagonal & trigonal crystals				trigonal crystals?				
	1) Ice		2) C	uart			3) Diamond	4) Both 1 &	22
21)	The n	numl	oer of at	oms pe	r un	it ce	ll of a cubic	crystal syst	em is 2, the
	arran	gem	ent of a	toms is					
	1) Bo	dy c	entred cu	ıbic			2) Face centred cubic		
	3) End centred cubic			4) Simple cu	ıbic				
22)	Coor	dina	tion nur	nber of	Na T	+ in :	NaCl is		
	(1) 3			(2) 4			(3) 5		(4) 6
23)	For a	n ioi	nic cryst	al or ge	ener	al fo	rmula AB a	nd co-ordin	ation number 6, the
	value	of r	adius ra	tio will	be				
	(1) G ₁	reate	r than 0.	73			(2) In between 0.414 and 0.732		
	(3) In between 0.225 and 0.414					4	(4) Less than 0.155		

24)	Which of the fo	of the following structure is most uncommon for metals?						
	1) B.C.C	2) Simple cubi	c 3) C.C.P	4) H.C.P				
	Hint: Only Po l	nas simple cubic p	acking.					
25)	Which of the fo	Which of the following describes hexagonal close packed arrangement of						
	spheres?							
	1) ABC ABA	2) ABC Al	BC 3) Al	BBABB 4) ABA ABB				
26)	For f.c.c arrang	gement the lowest	radius ratio limit	is				
	1) 0.155	2) 0.732	3) 0.414	4) 0.225				
27)	Which of the fo	llowing is an exan	ple of body cent	ered cube?				
	1) Mg	2) Zinc	3) Copper	4) Potassium				
28)	The co-ordinati	ion number of a m	etal crystallising	in a hexagonal close paced				
	structure is							
	1) 12	2) 4	3) 8	4) 6				
29)	Tetrahedral void is surrounded by how many spheres?							
	1) 6	2) 4	3) 8	4) 12				
30) The void between two oppositely directed planar triangles of sphere				riangles of spheres in				
	adjacent layers is called							
	1) Cubic void	2) Tetrahedral	void 3) Octah	nedral void 4) Any of these				
31)	Which of the fo	llowing packing is	more efficient?					
	1) Square close	– packing	2) Hexagon	al close - packing				
	3) Tetrahedral a	rrangement	gement 4) None of the above					
32)	The packing eff	ficiency in a simple	e cubic cell syster	n of crystals is				
	1) 68%	2) 52%	3) 74%	4) 92%				
33)	The percent of	void space in a bo	dy - centered cub	ic lattice is				
	1) 32%	2) 48%	3) 52%	4) 68%				
34)	If the radius of	K ⁺ and F ⁻ are 133	3 pm and 136 pm	respectively, the distance				
	between K ⁺ and F ⁻ in KF is							
	1) 269 pm	2) 134.5 pm	3) 136 pm	4) 133 pm				

	Hint: distance between K ⁺ and	$\mathbf{r} = \mathbf{r}_{k+} + \mathbf{r}_{cl}$				
35)	Potassium crystallizes with a					
	(1) Face-centered cubic lattice	(2) Body-centered cubic	lattice			
	(3) Simple cubic lattice	(4) Orthorhombic lattice				
36)	Glass is		_			
	(1) Super cooled liquid	(2) Crystalline solid				
	(3) Liquid crystal	(4) None of these	~O'			
37)	Amorphous solids					
	1) Have sharp melting points	2) Give X-ray diffracti	ion bands			
	3) Give a regular cut with knife	4) Are Isotropic.				
38)	In a cubic arrangement of A ar	nd B atoms, A atoms are at	t corners of unit cell			
	and B atoms at edge centers. O	ne "A" atom is missing fro	om one corner in			
each unit cell. The simplest formula of the compound is						
	1) A_2B_3 2) Al	B ₃ 3) A ₇ B ₄	4) A _{7/8} B ₃			
	Solution: A occupy 7 corners=77	X1/8 = 7/8, B occupy edge c	enters=12X1/4 =3			
39)	(9) In a compound, atoms of element Y form cubical - closest packing and t					
	of element X occupy 2/3 of tetrahedral voids. The formula of the compoun					
	will be					
	1) X_3Y 2) X_4Y_3	3) X_2Y_3	4) X ₂ Y			
	Solution : If no. of 'Y' atoms=a,	then no of tetrahedral voids:	=2a			
	Given element X occupies 2/3 of	tetrahedral voids. Thus no.	of X atoms= 2aX			
	2/3=4a/3 X: Y= $4a/3$: a = 4:	3 ∴ The formula of the co	mpound is X_4Y_3			
40) In an ionic crystal, cation "A" occupies the lattice points in a FCC arr						
	anion "B" occupies the two typ	es of tetrahedral voids. Th	e correct formula of			
	the ionic compound is					
	1) AB ₂ 2) A ₂ B	3) AB	4) A ₂ B ₃			
	Hint: for every atom two tetrahe	adral voide aviet				

41.	A solid is made up of two types of atoms "X" and "Y". Atoms of "X" occupy						
	all the octahedral sites while the atoms of "Y" have hcp arrangement. Its						
	formula is						
	1) XY	2) X ₂ Y	3) XY ₂	4) XY	4		
	Hint: for every	atom, one octal	nedral void exist	s. ∴ Both X &	Y are in 1:1 ratio.		
42)	A solid has a str	ructure in whic	ch W atoms are	located at the	e corners of the		
	cubic lattice, O	atoms at the co	entre of the edg	es and Na ato	m at the centre of		
	the cube. The fo	ormula of the c	ompound is		O		
	1) NaWO ₂	2) NaWO ₃	3) NaV	WO_4	4) Na_2WO_3		
	Solution: No. of	W at corners =	8X1/8=1				
	No of O at edges	=12X1/4 =3					
	No of Na at cent	er = 1		.0			
	∴ _S Formula:. Na	ıWO3					
43)	Edge length of a body centered cube is 400 pm. its body diagonal length						
	would be						
	1) 600 pm	2) 566 pm	3) 693	pm	4) 500 pm		
	Hint: body diago	onal length = \	√3 a				
44)	Copper crystall	ises in fcc with	a unit cell leng	th of 361 pm.	What is the radius		
,	of copper atom	1/7	8	•			
	1) 127 pm 2)		81 pm	4) 108 pm			
	Hint: atomic rad	$\operatorname{dius}\left(\mathbf{r}\right) = \frac{a}{2\sqrt{2}} =$	= 0.3535 a				
45)	Ar crystallizes i	n a F.C.C latti	ce with one ato	m at each latt	ice point. If the		
	edge length is 5.	.311A ⁰ at OK,	the distance be	tween nearest	neighbouring		
	atoms in Ar at '	O'K is					
	1) 3.755 A ⁰ 2)	$7.355 A^0$ 3)	5.735 A ⁰	4) 1.877 A ⁰			
	Hint: in fcc distance between nearest neighbours (d) = $2r = \frac{a}{\sqrt{2}} = 0.707$ a						

46)	KMnO ₄ is well known example of							
	(1) Triclinic system (2) Tetragonal system (3) Monoclinic System (4) Trigon							
47)	Body diagonal of a cube is 866 pm. Its edge length would be							
	1) 408 pm	2)1000 pm	3) 500 pm	4) 600 pm				
	Hint; length	n of body diagonal= $\sqrt{3}a$	a					
48)	The radius o	of Na ⁺ is 92 pm and tha	at of Cl [–] is 178 pi	n. The edge length of unit				
		would be (pm)	•					
	1) 178	2) 86	3) 270	4) 540				
	Hint: edge	length of f.c.c unit cell (a	$a) = 2[r_c + r_a]$	•				
49)	A body cente	ered cubic solid is made	e up of two eleme	ents A and B. Atom of A				
	occupies two	corners of the cube. I	f the remaining	position in the cell are				
	occupied by the atoms of B, the formula of the compound							
	1) AB ₃	2) A_3B_2	3) AB ₂	4) AB ₇				
	Hint: effective no. of 'A' atoms= $2X1/8 = 1/4$							
	Effective no. of 'B' atoms = $6X1/8 + 1 = 7/4$							
	Formula $= A$	_{1/4} B _{7/4} i.e. AB ₇						
50)	Match the el	ements (in List I) with	the shape of the	crystal (in List II)				
	List I	List II						
	(A) Be	1. Body-centred cubic						
	(B) Ca	2. Simple cubic						
	(C) Ba	3. Face-centred cubic						
	(D) Po 4. Hexagonal close- packed							
	W							
	1) A - 4, B-3	3, C-1, D-2	2) A - 4, B-3	, C-2, D-1				
	3) A-2, B-4,	C-1, D-3	4) A-4, B-1, (C-3, D-2				

Key

- 1) 2 2) 1 3) 2 4) 1 5) 2 6) 1 7) 1 8)4 9) 4 10) 4
- 11) 2 12) 3 13) 4 14) 3 15) 3 16) 1 17) 1 18) 2 19) 4 20) 4
- 21) 1 22) 4 23) 2 24) 2 25) 2 26) 3 27) 4 28) 1 29) 2 30) 3
- 31) 2 32) 2 33) 1 34)1 35) 2 36)1 37)4 38)4 39)2 40)1
- 41)1 42) 2 43) 3 44) 1 45) 1 46)4 47)3 48)4 49) 3 50)1