Halo Alkanes and Haloarenes

Sub Topic-I: Preparation and Properties of Alkyl Halides

1.	The poisonous gas	obtained by expo	osing chloroform to	air and sunlight is
	1) CH ₂ Cl ₂	2) CoCl ₂	3) CH ₂ O	4) CH ₃ Cl
2.	$CH_3OH \xrightarrow{PI_3} (A)$	$KCN \rightarrow (B)$ Hydrolysis	\rightarrow (C). The compou	nd (C) is
	1) CH ₃ OH	2) HCOOH	3) CH ₃ CHO	4) CH ₃ COOH
3.	$CH_3Cl \xrightarrow{KCN} (A)$	$\xrightarrow{H^+/H_2O}$ \rightarrow (B)		·
	1) CH ₃ NH ₂	2) HCOO	н , (
	3) CH ₃ COOH	4) CH ₃ CO	OCH ₃	
4.	A sample of chlore	oform before using	g as an anaesthetic,	is tested by
	1) Fehling's solution	n		
	2) Ammoniacal cup	orous chloride		
	3) Ammoniacal silv	ver nitrate solution		
	4) Silver nitrate sol	ution after boiling	with alcoholic KOH	
5.	Which one of the	following statemen	nts is wrong?	
	1) Lower alkyl hali	des are either color	urless gases or volati	le liquids
	2) Alkyl halides are	highly soluble in	water	
	3) Alkyl halides bu	rn easily with green	n edged flame	
	4) The higher alkyl	halides are colour	less solids	
6.	Which will be obta	ained by boiling C	CH ₂ Cl ₂ with caustic	soda?
	1) Sodium oxalate	2) Sodium acetat	e 3) Sodium forma	ate 4) Ethyl alcohol
7.	Which one of the	following statemen	nt is wrong?	
	1) Iodoform is used	l as an antiseptic		
	2) Chloroform can	be used as an anae	sthetic	
	3) Chloropicrin is u	ised as an insecticion	de	
	4) Chloretone is use	ed as an antisentic		

 RI > RCl > RBr 2) RBr > RCl > RI 3) RI > RBr > RCl 4) RCl > RBr > A mixture of 1-chlorobutane and 2-chlorobutane when treated with alcohologous KOH, gives 1) 1-butene 2) 2-butene A mixture of 1-butene and 2-buter Which of the following processes does not occur during formation of CHC from ethyl alcohol and bleaching powder? Oxidation Chlorination Hydrolysis Reduction For the reaction, C₂H₅OH + HX	olic					
 KOH, gives 1) 1-butene 2) 2-butene 3) Isobutylene 4) A mixture of 1-butene and 2-butene 10. Which of the following processes does not occur during formation of CHC from ethyl alcohol and bleaching powder? 1) Oxidation 2) Chlorination 3) Hydrolysis 4) Reduction 11. For the reaction, C₂H₅OH + HX ZnX₂ → C₂H₅X The decreasing order of reactivity of halogen acids is: 						
 1) 1-butene 2) 2-butene 3) Isobutylene 4) A mixture of 1-butene and 2-butene 10. Which of the following processes does not occur during formation of CHC from ethyl alcohol and bleaching powder? 1) Oxidation 2) Chlorination 3) Hydrolysis 4) Reduction 11. For the reaction, C₂H₅OH + HX						
 3) Isobutylene 4) A mixture of 1-butene and 2-butenesses Which of the following processes does not occur during formation of CHC from ethyl alcohol and bleaching powder? 1) Oxidation 2) Chlorination 3) Hydrolysis 4) Reduction For the reaction, C₂H₅OH + HX ZnX₂ C₂H₅X The decreasing order of reactivity of halogen acids is: 						
 10. Which of the following processes does not occur during formation of CHC from ethyl alcohol and bleaching powder? 1) Oxidation 2) Chlorination 3) Hydrolysis 4) Reduction 11. For the reaction, C₂H₅OH + HX ZnX₂→C₂H₅X The decreasing order of reactivity of halogen acids is: 						
from ethyl alcohol and bleaching powder? 1) Oxidation 2) Chlorination 3) Hydrolysis 4) Reduction 11. For the reaction, $C_2H_5OH + HX \xrightarrow{ZnX_2} C_2H_5X$ The decreasing order of reactivity of halogen acids is:	e					
 1) Oxidation 2) Chlorination 3) Hydrolysis 4) Reduction 11. For the reaction, C₂H₅OH + HX ZnX₂ C₂H₅X The decreasing order of reactivity of halogen acids is : 	l_3					
11. For the reaction, $C_2H_5OH + HX \xrightarrow{Z_nX_2} C_2H_5X$ The decreasing order of reactivity of halogen acids is:						
The decreasing order of reactivity of halogen acids is:						
	[Cl					
12. (CH_3) , $CHCl + NaI \rightarrow (CH_3)$, $CHI + NaCl$. The above reaction is known as						
1) Finkelstein reaction 2) Stephens reaction						
3) Kolbe's reaction 4) Wurtz reaction						
13. Ethyl orthoformate is formed by heatingwith sodium ethoxide						
1) HCOOH 2) C_2H_5OH 3) $CHCl_3$ 4) CH_3CHO						
14. Pure chloroform may be prepared by						
1) Chlorination of Methane						
2) Partial reduction of CCl ₄						
3) The action of Bleaching Powder and Alkali on Ethanol						
4) Distilling Chloral Hydrate with conc. aqueous Alkali solution						
15. Which is detected by carbylamine test?						
1) H ₂ NCONH ₂ 2) CH ₃ CONH ₂ 3) C ₂ H ₅ NH ₂ 4) All of these						
16. In which of the following compounds, carbon exhibits a valency of 4 but						
oxidation state-2?						
1) HCHO 2) CH ₃ Cl 3) CH ₂ Cl ₂ 4) CHCl ₃						

17. The antiseptic action of CHI₃ is due to

- 1) Iodoform itself
- 2) Liberation of free iodine
- 3) Partially due to iodine and partially due to CHI₃ itself
- 4) None of the above

18. The reaction conditions leading to the best yield of C₂H₅Cl are

- 1) $C_2H_6(excess) + Cl_2 \xrightarrow{UV \ light}$
- 2) $C_2H_6 + Cl_2 \xrightarrow{Dark, Room \ temp.}$
- 3) $C_2H_6 + Cl_2(excess) \xrightarrow{UV \ light}$ 4) $C_2H_6 + Cl_2 \xrightarrow{UV \ light}$

Which one of the following has antiseptic property? **19.**

1) Dichloromethane

2) Tri iodomethane

3) Trifluoromethane

4) Tetrachloromethane

1-Bromopropane and 2-bromopropane on treatment with sodium in presence **20.** of ether gives

1) n-hexane

2) 2, 3-dimethyl butane

3) 2-methyl pentane

4) A mixture of all these different alkanes

Chloroform on treatment with phenol in presence of caustic alkali forms 21. salicylaldehyde. This reaction is known as:

1) Carbylamine reaction

- 2) Cannizzaro's reaction
- 3) Wurtz Fittig reaction

4) Reimer – Tiemann reaction

22.
$$CCl_3CHO \xrightarrow{NdOH} (A) \xrightarrow{+Cl_2} (B)$$
. The product (B) can be used as A

- 1) Fire extinguisher 2) Solvent
- 3) Insecticide
- 4) All of these

23.
$$CH_3C \equiv CH \xrightarrow{Dil.H_2SO_4} (B) \xrightarrow{CHCl_3} (C)$$
 Compound (C) can be used as

- 1) An anesthetic
- 2) An insecticide
- 3) A solvent
- 4) A hypnotic

24. Isobutyl magnesium bromide with dry ether and absolute alcohol gives

- 1) (CH₃)₂CHCH₂OH and CH₃CH₂MgBr
- 2) (CH₃)₂CH CH₂ CH₂ CH₃ and Mg (OH) Br
- 3) (CH₃)₃CH and CH₃CH₂OMgBr
- 4) $(CH_3)_3CH$, $H_2C = CH_2$ and Mg (OH) Br

25.	Which of the following will give a yellow precipitate with I ₂ /NaOH?						
	1) HCHO	2) CH ₃ COOCOCH ₃					
	3) CH ₃ CONH ₂	4) CH ₃ CH(OH)CH ₂ CH ₃					
26.	The number of isomers for th	ne compound with molecular formula C ₂ BrClFI					
	is						
	1) 3 2) 4	3) 5 4) 6					
27.	Match List I (compound) wit	h List II (Use) and select the correct answer					
	using the codes given below i	n the lists					
	List – I (Compound)	List – II (Use)					
	I) Acetyl salicyclic acid	A) Insecticide					
	II) DDT	B) Drug					
	III) Naphthalene	C) Moth repellent					
	IV) Carbon tetrachloride	D) Fire extinguisher					
		E) Refrigerant					
	1) I-B, II-A, III-C, IV-D	2) I-E, II-C, III-D, IV-A					
	3) I-B, II-C, III-D, IV-A	4) I-E, II-A, III-C, IV-D					
28.	Among the following the mol	ecule with highest dipole moment is					
	1) CH ₃ Cl 2) CH ₂ Cl ₂	3) CHCl ₃ 4) CCl ₄					
29.	The reaction of chloroform w	vith alcoholic KOH and P-toluidine forms					
	H ₃ C CN	H ₃ C NC					
	H_3 C N_2 CI	H ₃ C NHCHCl ₂					
30.	Which one of the following w	vill not form a yellow precipitate on heating with					
	an alkaline solution of iodine	?					
	1) CH ₃ CH (OH)CH ₃	2) CH ₃ CH ₂ CH(OH)CH ₃					
	3) CH ₃ OH	4) CH ₃ CH ₂ OH					

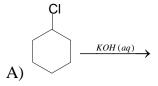
31.	Debromination of meso dibromobutane will give the product as								
	1) n-butane	2) 2-butyne	3) cis	-2-butene	4) trans-2-butene				
32.	Alkyl halides react	with dialkyl copp	pper reagents to give						
	1) Alkenes	2) Alkyl Copper I	Halides	3) Alkanes	4) Alkenyl Halides				
33.	Tertiary alkyl halid	des are practically	v inert to substitution by $S_N 2$ mechanism						
	because of								
	1) Insolubility	2) Instability	3) Inc	ductive Effect	4) Steric Hindrance				
34.	The major product	t obtained on trea	tment of	f CH ₃ CH ₂ CH	(F)CH ₃ with CH ₃ O				
	/ CH ₃ OH is	/ CH ₃ OH is							
	1) CH ₃ CH ₂ CH(OCH	2) CF	2) $CH_3CH = CHCH_3$						
	3) $CH_3CH_2CH = CH_3CH_3$	4) CF	4) CH ₃ CH ₂ CH ₂ CH ₂ OCH ₃						
35.	Which among the	following is a cata	lyst for	the preparati	on of Grignard				
	reagent?			5					
	1) Iodine powder	2) Iro	n powder						
	3) Activated charcos	4) Ma	4) Manganese dioxide						
36.	$CH_3Br + N\overline{u} \rightarrow CH_3$	$-NU + \overline{Br}$							
	The decreasing ord	ler of the rate of t	he abov	e reaction wit	h nucleophile (Nu ⁻)A				
	to D is								
	$[Nu^- = (A) PhO^-, (B$	$[Nu^{-} = (A) PhO^{-}, (B) ACO^{-}, (C) HO^{-}, (D) CH_{3}O^{-}]$							
	1) $D > C > A > B$	2) $D > C > B > A$	3) A	> B $>$ C $>$ D	4) $B > D > C > A$				
37.	Among the following	ng the one that gi	ves posit	ive iodoform	test upon reaction				
	with I ₂ and NaOH	is							
	1) CH ₃ CH ₂ CH(OH)	CH ₂ CH ₃	2) C ₆	2) C ₆ H ₅ CH ₂ CH ₂ OH					
	CH ₃								
	3) H ₃ C —OH		4) Ph	CHOHCH ₃					
38.	Which of the follow	ving compounds l	nas the h	nighest boiling	g point?				
	1) CH ₃ CH ₂ CH ₂ Cl		2) CF	H ₃ CH ₂ CH ₂ CH ₂	$_{2}C1$				
	3) CH ₃ CH(CH ₃)CH	$_2$ Cl	4) (C	$H_3)_3C-Cl$					

39.	Which can underg	go haloform reactio	n?	
	1) (CH ₃) ₃ C-OH	2) $(C_2H_5)_2C = O$	3) Acetophenone	4) Benzophenone
40.	Feron used as refr	igerant is		
	$1) F_2C = CF_2$	2) CH ₂ F ₂	3) CCl ₂ F ₂	4) CF ₄
41.	Maximum number	r of molecules of C	H ₃ I that can react w	ith a molecule of
	CH ₃ NH ₂ is			
	1) 3	2) 4	3) 2	4) 1
42.	$HC \equiv CH \xrightarrow{H_8SO_4} H_2SO_4 \rightarrow -$	$\xrightarrow{CH_3MgBr} \xrightarrow{P/Br_2} (X$	(X); (X) is	C
	1) CH ₃ CH(Br)CH ₃	2) CH ₃ CH ₂	CH ₂ Br	()
	$3) H_2C = CH - Br$	4) BrCH =	CH – CH ₃	
43.	Match List I with	List II and pick the	e correct matching f	orm the codes given
	below		~ O	
	List I (Haloalkane	/ arene)	List - II	
	A) Iodoform	1) C	F ₄	
	B) BHC	2) A	ntiseptic	
	C) Freon – 14	3) M	oth repellent	
	D) Halothanes	4) In	halation anaesthetic	
	E) P-Dichlorobenz	ene 5) Te	ermite pesticide	
	1)A-2, B-4, C-5, D	-3, E-1	2) A-2, B-5, C-1, I	D-4, E-3
	3) A-3, B-4, C-2, D	-1, E-5	4) A-1, B-3, C-5, I	D-2, E-4
44.	In the reaction, R	$X \xrightarrow{Alc.KCN} (A) \xrightarrow{Dil.F}$	(B): the product	t (B) is
	1) Alkyl Chloride	2) Aldehyde	3) Carboxylic Acid	1 4) Ketone
45.	Which of the follo	wing haloalkanes is	s most reactive?	
	1) 1-chloropropane	2) 1-bromopropane	e 3) 2-chloropropane	e 4) 2-bromopropane
46.	In the chemical	reaction, CH_3CH_2N	$JH_2 + CHCl_3 + 3KOH -$	\rightarrow $(A) + (B) + 3H_2O$ the
	compounds (A) an	d (B) are respective	ely	
	1) C ₂ H ₅ NC and 3K	Cl	2) C_2H_5CN	and 3KCl
	3) CH ₃ CH ₂ CONH ₂	and 3KCl	4) C_2H_5NC	and K ₂ CO ₃

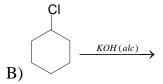
47.	$C_2H_5Cl \xrightarrow{Moist} (A)$	$\xrightarrow{Al_2O_3} (B) \xrightarrow{S_2Cl_2}$	\rightarrow (C)						
	In the above sequence of reactions, identify (C) is								
	1) Chloroethene	2)	Chloropicrin						
	3) Mustard gas	4)	Lewisite gas						
48.	Ethyl chloride on	reduction with I	LiAlH ₄ gives	compound	'X' as an	important			
	product. 'X' on cl	nlorination with	one mole of	Cl ₂ in the	presence	of light at			
	ordinary temperat	ture gives 'Y'. W	hat is 'Y'?		C				
	1) C ₂ H ₅ OH	2) C_2H_5Cl	3) C_2H_6		4) C ₂ H ₄				
49.	Which of the	following on	heating wit	h aqueou	s KOH	produces			
	acetaldehyde?			XIII					
	1) CH ₃ COCl	2) CH ₃ CH ₂ Cl	3) CH ₂ C	1CH ₂ Cl	4) CH ₃ CH	ICl_2			
50.	Which one of the f	following does no	ot undergo io	doform rea	ction?				
	1) Secondary butyl	alcohol	2) Isopro	pyl alcohol					
	3) Diethyl ketone	. 0	4) Ethyl	alcohol					
51.	On monochlorina	ation of 2-meth	ıyl butane,	the total	number	of chiral			
	compounds is								
	1) 2	2) 4	3) 6		4) 8				
52.	Which of the follo	wing will have a	meso isomer	also?					
	1) 2-chlorobutane		2) 2, 3-D	Dichlorobuta	ine				
	3) 2, 3-Dichloroper	ntane	4) 2-Hyd	lroxy propa	noic acid				
53.	The compound ad	ded to prevent c	hloroform to	form phos	gene gas (Poisonous			
	gas) is								
1	1) CH₃COOH	2) CH ₃ O	H 3)	CH ₃ COCH	\mathbf{H}_3 4)	C_2H_5OH			
54.	Among the haloge	ns, the one whicl	n is oxidized	by nitric ac	eid is				
	1) Iodine	2) Chlorine	3) Bromi	ine	4) Fluorin	e			

55. On treating a mixture of two alkyl halides with sodium metal in dry ether, 2-methyl propane was obtained. The alkyl halides are

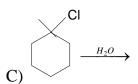
- 1) 1-chloropropane and chloroethane
- 2) 2- chloropropane and chloroethane
- 3) 2-chloropane and chloromethane
- 4) 1- chloropropane and chloromethane

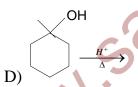

56. Match the following Column I and Column II.

Column I


Column II

(Reaction)

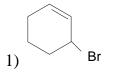

(Type of reaction)


 $p) S_N 1$

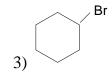
 $q) S_N 2$

r) E₁

s) E₂

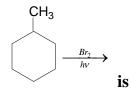

2)

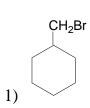
Α		C	D
1) p	q	r	S

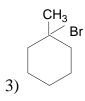

A B C D q s p r

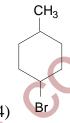
4) s q r p

57. Which of the following is fast debrominated?




2) Br


4) Br


58. The major product obtained in the reaction

59. Arrange the following compounds in the decreasing order of the boiling point

 CH_3Br

CH₃CH₂Br

1) I > II > III > IV 2) IV > III > II > I

CH₃CH₂CH₂Br

CH₃CH₂CH₂CH₂Br

4) III > IV > I > II

Ι

60.

II

III

IV

1) Of its covalent bond

2) Of its low boiling point

3) I > III > II > IV

- 3) Of its high melting point
- 4) It gives incombustible vapours
- 61. Match List I with List II and select the correct answer using the codes given below the lists.

List – I (compound)

List – II (Use)

A) Chloretone

i) Monomer

B) Chloropicrin

ii) In war and as insecticide

C) Lindane

iii) Insecticide

D) Teflon

iv) Hypnotic

Codes

A B C D

- 1) iii i iv ii
- 2) i ii iii iv
- 3) iv iii ii i
- 4) ii iv i iii

62. Match List I with List II and select the correct answer using the codes given below the lists.

List I (Compound)

List II (Action)

A) Teflon

i) Ozone layer depletion

B) Pyrene

ii) Non-bio degradable insecticide

C) DDT

iii) Non-stick cook-wares and insulator

D) Freon

iv) Fire extinguisher

Codes

A B C D

1) i ii iii iv

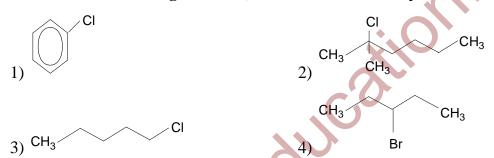
2) iv iii i ii

- 3) iii iv ii i
- 4) ii i iv iii
- 63. The intermediate compound formed in Frankland's reaction is
 - 1) $RZnI_2$
- $2) R_2 Zn$
- 3) RZnI
- 4) R_2ZnI
- 64. Which is the most stable carbocation formed as intermediate in nucleophilic substitution reaction?

KEY

1) 2	2) 4	3) 3	4) 3	5) 2	6) 3	7) 4	8) 3	9) 4	10) 4
11) 2	12) 1	13) 1	14) 4	15) 3	16) 2	17) 2	18) 1	19) 2	20) 4
21) 4	22) 4	23) 4	24) 3	25) 4	26) 4	27) 1	28) 1	29) 2	30) 3
31) 3	32) 3	33) 4	34) 2	35) 1	36) 1	37) 4	38) 2	39) 3	40) 3

41) 1 42) 1 43) 2 44) 3 45) 4 46) 1 47) 1 48) 2 49) 4 50) 3


51) 2 52) 2 53) 4 54) 1 55) 3 56) 2 57) 2 58) 3 59) 2 60) 4 www.sakshieducatik

Sub Topic – II: Nucleophilic Substitution Reaction

1. $CH_3 - CH_2 - Br$ on treatment with LiAlH₄ gives ethane gas while $(CH_3)_3C - Br$ on same treatment gives H_2 gas because

- 1) The former is S_N2 and later is E_2 reaction
- 2) The former is E_2 and later is S_N 2 reaction
- 3) The former is S_N1 and later is E_2 reaction
- 4) The former is E_2 and later is S_N 2 reaction

2. Which of the following shows S_N1 reaction most readily?

3. Which of the following is most reactive towards nucleophilic substitution reaction?

- 1) $CH_2 = CH Cl$
- 2) C_6H_5C1
- 3) $CH_3CH = CHCl$
- 4) $CICH_2 CH = CH_2$

4. Consider the following bromides

The correct order of S_N1 reactivity is

- 1) B > A > C
- 2) C > B > A
- 3) A > B > C
- 4) B > C > A

5. An S_N 2 reaction at an asymmetric carbon of a compound always gives

- 1) An enantiomer of the substrate
- 2) A product with opposite optical rotation
- 3) A mixture of diastereomers

4) A single stereoisomer

6. The organic chloro compound, which shows complete stereo chemical inversion during a S_N 2 reaction, is

1) CH₃Cl

2) $(C_2H_5)_2$ CHCl

3) (CH₃) ₃CCl

4) (CH₃) ₂CHCl

7. Which of the following is the correct order of decreasing S_N 2 reactivity?

1) $RCH_2X > R_2CHX > R_3CX$

2) $R_3CX > R_2CHX > RCH_2X$

3) $R_2CHX > R_3CX > RCH_2X$

4) $RCH_2X > R_3CX > R_2CHX$

 $CH_3Br + Nu^- \rightarrow CH_3 - Nu + Br^-$. The decreasing order of the rate of the above 8. reaction with nucleophiles (Nu⁻) A to D is

 $[Nu' = (A) PHO', (B) AcO', (C) HO', (D) CH_3O']$

1) D > C > A > B 2) D > C > B > A

3) A > B > C > D

4) B > D > C > A

Tertiary alkyl halides are practically inert to substitution by $S_{N}2$ mechanism 9. because of

1) Insolubility

2) Instability

3) Inductive Effect 4) Steric Hindrance

- The decreasing order of reactivity of 10.
 - I) Benzyl chloride
 - II) p-nitro benzyl chloride and
 - III) p-methaxybenzyl chloride towards S_N1 reaction is

1) I > II > III

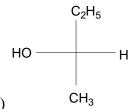
2) II > III > I

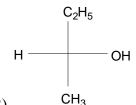
3) III > II > I

4) III > I > II

The main organic product of the reaction of neopentyl bromide with aqueous 11. NaOH is

1) Neopentyl alcohol


2) Isobutyl alcohol


3) 3-Methylbutan-2-ol

4) 2-Methylbutan-2-ol

The product in the reaction

 C_2H_5 CH_3

- 1)
- 3) Both

- 2)
- 4) None

13. The major product formed in the following reaction is

$$CH_{3} \xrightarrow{|C|} CH_{2}Br \xrightarrow{CH_{3}O^{-}} CH_{3}OH$$

$$H$$

$$CH_{3} \xrightarrow{|C|} CH_{3}OH$$

$$CH_3$$
 $|$
 $CH_3 - C = CH_2$

Which of the following is the correct order of decreasing reactivity towards **14.** nucleophilic substitution?

- 1) Vinyl chloride > Allyl chloride > Propyl chloride
- 2) Propyl chloride > Vinyl chloride > Allyl chloride
- 3) Allyl chloride > Vinyl chloride > Propyl chloride
- 4) Allyl chloride > Propyl chloride > Vinyl chloride

Which of the following is an example of S_N^2 reaction? **15.**

1)
$$CH_3Br + OH^- \rightarrow CH_3OH + Br^-$$

2)
$$(CH_3)_2 CHBr + OH^- \rightarrow (CH_3)_2 CHOH + Br^-$$

3)
$$CH_3CH_2OH \xrightarrow{-H_2O} CH_2 = CH_2$$

4)
$$(CH_3)_3 C - Br + OH^- \rightarrow (CH_3)_3 COH + Br^-$$

16. The reaction given below is

$$CH_3(CH_2)_5$$
 $C-Br \xrightarrow{OH^-} HO-C$
 CH_3
 CH_3
 CH_3
 CH_3

1) $S_E 2$

- 2) $S_{N}1$
- 3) $S_{N}2$

Backside displacement is observed in all S_N 2 reactions because **17.**

- 1) Nucleophiles are electronically attracted by the leaving group
- 2) Nucleophiles are electronically repelled by the leaving group
- 3) S_N 2 reactions always takes place through two steps
- 4) Attack on a carbocation intermediate is favoured on the opposite side from which the leaving group departs

18. S_N2 mechanism proceeds through the involvement of

- 1) Carbocation
- 2) Transition State 3) Free Radical 4) Inductive Effect

Which of the following undergoes nucleophilic substitution exclusively by S_N1 19. mechanism?

1) Ethyl Chloride

2) Isopropyl Chloride

3) Chlorobenzene

4) Benzyl Chloride

S_N2 reactions are **20.**

- 1) Stereo selective but not stereo specific
- 2) Stereo selective as well as stereo specific
- 3) Stereo specific but not stereo selective
- 4) Neither Stereo selective nor stereo specific

21. The order of reactivities of the following alkyl halides for a S_N 2 reaction is

1) RF > RCl > RBr > R1

2) RF > RBr > RCl > R1

3) RCl > RBr > RF > R1

4) R1 > RBr > RCl > RF

22. Which of the following nucleophiles favours S_N2 mechanism?

- $1): \overline{O}H$
- 2) *H*₂ *O*
- 3) *NH*₃
- 4) : $\overline{O}R$

Which of the following factors does not favour S_N1 mechanism? 23.

1) Strong nucleophile

- 2) Polar solvent
- 3) Low concentration of nucleophile
- 4) 3° alkyl halide

Isopropyl chloride undergoes hydrolysis by 24.

1) S_N1 mechanism

2) S_N2 mechanism

3) S_N1 and S_N2 mechanisms

4) E₁ mechanism

25. Consider the following haloalkanes

- A) CH₃F
- B) CH₃Cl
- C) CH₃Br
- D) CH₃I

The increasing order of reactivity in nucleophilic substitution reaction is

- 1) A < B < D < C 2) A < B < C < D
- 3) A < C < B < D
- 4) D < C < B < A

Key

- 5) 4 1)1 2) 2 6) 1 7) 1 8) 1 9) 4 10) 4
- 14) 4 15) 1 16) 3 17) 2 18) 2 19) 4 20) 2 11) 4 12) 2 13) 4
- **2**3) 1 24) 3 25) 2

Sub Topic – III: Chloro Benzene

1. Chlorobenzene is

- 1) More reactive than ethyl bromide
- 3) As reactive as methyl chloride
- 2) More reactive than isopropyl chloride
- 4) Less reactive than benzyl chloride

2. Chlorobenzene is prepared commercially by

1) Dow's process

2) Deacon's process

3) Raschig process

4) Etard's process

3.

1) Dichloro benzene

- 3) 1, 3, 5 trichloro benzene

- 2) Benzyl chloride
- 4) Chlorobenzene

During chlorination of benzene using Cl₂ in the presence of FeCl₃ the attacking species is

1) Cl-

- 3) Cl₂
- 4) FeCl₄

Direct iodination of benzene is not possible because

- 1) Iodine is oxidising agent
- 2) The product C_6H_5I is reduced to by C_6H_6 HI

3) HI is unstable

4) Ring is deactivated

The following is an example of Sandmeyer reaction

1)
$$C_6H_5N_2^+Cl^- \xrightarrow{CuCl} C_6H_5Cl$$

2)
$$C_6H_5N_2^+Cl^- \xrightarrow{H_2O/\Delta} C_6H_5OH$$

3)
$$C_6H_5N_2^+Cl^- \xrightarrow{CuCN/KCN} C_6H_5CN$$

4)
$$C_6H_5N_2^+Cl^- \xrightarrow{KI/warm} C_6H_5I$$

7. Chlorobenzene on reaction with
CH_3Cl
 in presence of AlCl_3 gives

1) Toulene

2) m-chloro toulene

3) Only o-chloro toluene

4) Mixture of o- and p-chlorotoulene

8. Aryl halides are less reactive towards nucleophili substitution reaction as compared to alkyl halides due to

- 1) The formation of less stable carbonium ion
- 2) Resonance stabilization

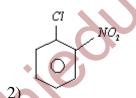
3) Longer – carbon – halogen bond

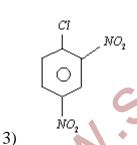
4) Both (1) and (2)

9. Chlorobenzene on nitration gives major product of

- 1) 1-chloro 4 nitro benzene
- 2) 1- chloro 3 nitro benzene

3) 1, 4 - dinitro benzene


- 4) 2, 4, 6 tri nitro benzene
- 10. The reaction $C_6H_5I + 2Na + CH_3I \rightarrow C_6H_5CH_3 + 2NaI$ is
 - 1) Wurtz reaction


2) Fittig reaction

3) Wurtz - Fittig reaction

4) Sandmeyer reaction

11. Which of the following compound undergoes replacement of Cl by OH by merely warming with aq NaOH

 $NO_{2} \xrightarrow{CI} NO_{2}$ $VO_{2} \xrightarrow{NO_{2}}$

C1 C1

12. IUPAC name of

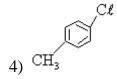
- is
- 1) 1, 2 dichloro benzene
- 2) m-dichloro benzene
- 3) 1, 6- dichloro benzene
- 4) o- dichloro benzene

13. Chlorobenzene on reaction with CH₃Cl in the presence of AlCl₃ will give

1) Toluene

2) m - Chloro toluene

3) p - Chloro toluene


4) A mixture of o - and p - chlorotoluene

14. Which of the following will be the least reactive towards nucleophilic substitution?

1) C₂H₅C*l*

 $\mathrm{CH_2C}\ell$

15. Order of hydrolysis of the following compounds in increasing order

2) IV < III < II < I

(CH₃)₃C-Br

ΙV

I

П

Ш

3) I < II < III < IV 4) I < II < IV < III

16. The reaction given below is known as

 $C_6H_5I + 2Na + ICH_3 \rightarrow C_6H_5 - CH_3 + 2NaI$

1) Wurtz reaction

1) I < IV < II < III

2) Fiting reaction

3) Wurtz - Fiting reaction

4) Ullmann reaction

17. The reaction of toluene with chlorine in the presence of ferric chloride gives mainly

1) m - chlorotoluene

2) Benzyl Chloride

3) o - and p - Chlorotoluene

4) Benzyl chloride

18. Chlorobenzene reacts with Mg in dry ether to give a compound (A) which further reacts with ethanol to yield

1) Ethylbenzene

2) Phenol

3) Phenylmethyl ether

4) Benzene

19. 1	Non - Sticking	frying pans are co	oated wit	th Teflon wh	ich is p	olymer of	
	1) Ethylene	2) Styrene 3)	Tetrafluo	roethylene	4) Ch	loro fluorometha	ine
20.	Which of the f	ollowing compour	nds on ox	idation give	s benzoi	ic acid?	
	1) Chloropheno	ol 2) Chlorotol	uene	3) Chlorobe	enzene	4) Benzyl Chlo	ride
21.	Chlorobenzen	e on heating with	aqueous	NH ₃ under	pressu	re in the preser	ice of
	cuprous chlori	de gives					
	1) Benzamide	2) Nitrobenz	zene	3) Aniline	4) Chlo	oroaminobenzene	,
			Key		;(0	0.	
	1)4 2) 3	3) 4 4) 2 5) 2	2 6) 1	7) 4 8) 1	9) 1	10) 3	
	11) 4 12) 1	13) 4 14) 4 15)	3 16) 3	17) 3 18) 4	4 19) 3	20) 4	
	21) 3		(0)				
		Sales					