Co-Ordination Compounds

1.	Potassium ferrocyanide is an example for								
	1) Complex salts	2) Normal salt	s 3)	Double salts	4) Basic salts				
2.	Example for a coordination compound is								
	1) KCl . Mg Cl ₂ . 6H ₂ O	2	2) K ₂ SO ₄ .Al ₂ (SO ₃).24 H ₂ O						
	3) CoCl ₃ . 6N H ₃	4) Fe SO ₄ .(N	H ₄) ₂ SO ₄ . 6 H ₂ (0				
3.	Which is a double salt?								
	1) Carnallite	2) Potassium	Ferrocyanide					
	3) Potassium ferricyanide								
4.	Which forms equal number of moles of ions, when one mole it is dissolved in								
	excess of water								
	1) Ferrous Ammonium Sulphate, Carnallite								
	2) Carnallite, Alum								
	3) Alum, Potassium Ferrocyanide								
	4) Potassium Ferrocyanide, Potassium Ferricyanide								
5.	Which answers all the t	ests of the cons	tituent ions	?					
	1) Mohr's Salt								
	2) Nessler's Reagent								
	3) Lithium Aluminium Hydride								
	4) Prussian blue coloured complex								
	2								

Characteristics of Complex Compounds

6. In which of the following transition metal complexes does the metal exhibit zero oxidation state?

1) [Co (NH ₃) ₆] Cl ₃	2) [Fe (H ₂ O) ₆] SO ₄
000	201

- 3) [Ni (CO)₄] 4) [Fe (H₂O)₆] Cl₃
- 7. The number of moles of ions produced when one mole of Potassium Ferricyanide is dissolved in water is

4)6

- 1) 2 2) 4 3) 5
- 8. Total number of moles of ions that can be obtained from each mole of [Co (NH₃)₃ Cl₃] is
 - 1) 1 2) 0 3) 3 4) 4
- 9. The number of ions formed in aqueous solution by the compound [Co (NH₃)₄ Cl₂] Cl is
 - 1) 2 2) 3 3) 4 4) 5
- 10. The following does not give a precipitate either with AgNO3 or BaCl2
 - 1) [Co (NH₃)₅ Cl] SO₄ 3) [Co (NH₃)₄ Cl₂]Cl 2) [Co (NH₃)₃ Cl₃] 4) $[Co(NH_3)_2 Cl_4]Cl$
- 11. Which of the following has highest molar conductivity?
 - 1) [Co (NH3)6] Cl3
 2) [Co (NH3)5Cl] Cl2

 3) [Co (NH3)4 Cl2] Cl
 4) [Co (NH3)3 Cl3]
- 12. Transition elements form complexes readily because
 - 1) Small size of Cation 2) Large ionic Charge
 - 3) Vacant d Orbitals 4) All the above
- 13. Which of the following is cationic complex?

1) $K_4 [Fe(CN)_6]$

2) $\left[\operatorname{Ni}(\operatorname{CO})_{4} \right]$ 3) $\left[\operatorname{Co}(\operatorname{NH}_{3})_{3} \operatorname{Cl}_{3} \right]$ 4) $\left[\operatorname{Cu}(\operatorname{NH}_{3})_{4} \right] \operatorname{SO}_{4}$

14. The no. of moles of AgCl obtained when excess AgNO₃ is added to one mole of [Cr(NH₃)₄Cl₂]Cl 1) 1 2) 2 3) 3 4) 4

15. Aqueous solution of $[Co (H_2O)_5 SO_4]Cl$ gives precipitate with

1) $BaCl_{2(aq)}$ 2) $AgNO_{3(aq)}$ 3) Both 1 and 2 4) Neither 1 nor 2

- 16. The following solutions requires three moles of AgNO₃ for the complete precipitation of all the chloride ions present in it
 - 1) One litre of 1M [Co $(NH_3)_6$] Cl₃
 - 2) Three litres of 1M [Co (NH₃)₄ Cl₂] Cl
 - 3) One litre of 1.5M [Co (NH₃)₅ Cl] Cl₂
 - 4) All the above

17. Bonds present in K₄ [Fe (CN)₆] are

- 1) Only ionic
- 3) Ionic and Covalent

- 2) Only covalent
- 4) Ionic, covalent and coordinate covalent

Ligands and Co-Ordination Number

18.	Ligand in a metal carbonyl complex is							
	1) NH3	2) CO	3) CN-	4) SCN-				
19.	The ionizable valency of Ni in Ni (CO)4 is							
	1) 2	2) 4	3) 0	4) 1				
20.	According to We	rner's theory of va	lency transition	metals possess	ses			
	1) Only one type of	of valency	2) Two types of	f valencies				
	3) Three types of	valencies	4) Four types of	f valencies				
21.	The no. of moles	of AgCl ppted who	en excess of Ag	NO3 is mixed v	with one mole			
	of [Cr (NH3)4 Cl	2] Cl is	-2					
	1) 0	2) 1	3) 2	4) 3				
22.	A bidentate ligan	d is	XV					
	1) Oxalate ion	2) Carbon Monoxi	de 3) Nitroniu	um ion	4) Water			
23.	Which is a polyde	entate ligand						
	1) EDTA	2) Ethylene Diami	ne 3) O	xalate ion	4) CO			
24.	An ambident liga	and is						
	1) CO	2) <i>CN</i> ⁻	3) <i>CO</i> ₂	4) H_{2}	0			
	C	2						
	~~~							

## **IUPAC Nomenclature of Co-Ordination Compounds**

25. IUPAC name for the complex is  $\left[ Cu(NH_3)_4 \right] SO_4$ 1) Cuprammonium Sulphate 2) Copper Sulphate Tetra Ammonia 3) Tetramine Copper Sulphate 4) Copper Ammonium Sulphate 26. HexaaquoTitanium Chloride is represented as  $1) \left[ Ti (H_2 O)_6 \right] Cl_3$  $2) \left[ \text{Ti} \text{Cl}_3 \right] 6\text{H}_2\text{O}$  $4) \left[ Ti(H_2O)_3 Cl_3 \right]$  $(Ti(H_2O)_5 Cl]Cl_2$ Which of the following is not a neutral molecular complex? 27.  $_{2)}$  [Ni(CO)₄  $1) \left[ \operatorname{Co}(\mathrm{NH}_3)_3 \mathrm{Cl}_3 \right]$  $3) \left[ Cu \left( NH_3 \right)_4 \right] SO_4$ 4) All **Bonding and Effective Atomic Number** 

28. Which does not obey EAN rule?

1. 
$$\begin{array}{c} K_4 \Big[ Fe(CN)_6 \Big] \\ 2. \\ K_3 \Big[ Fe(CN)_6 \Big] \\ 3. \\ \Big[ Co(NH_3)_6 \Big] Cl_3 \\ 4. \\ \Big[ Ni(CO)_4 \Big] \end{array}$$

29. Which follows EAN rule?

1. 
$$Fe(CO)_5$$
 2.  $Ni(CO)_4$ 

	3. $K_4 \Big[ Fe(CN)_6 \Big]$ 4. All are correct								
30.	The complex follows the EAN rule. Then the value of x is								
	1.3 2.4 3.5 4.6								
31.	Assertion (A): Racemic mixture has a net rotation of zero.								
	Reason (R): Racemic mixture contains optically inactive isomers.								
	1. Both A and R are true, R properly explains A.								
	2. Both A and R are true, R does not explain A.								
	3. A is true, but R is false.								
	4. A is false, but R is true.								
32.	Ammonium ions are detected with								
	1) Nessler's reagent2) Borsch reagent								
	3) Tollen's reagent4) Fehling's solution								
33.	The complex $\left[Fe(H_2O)_5 NO\right]^{2+}$ is formed in the brown ring test for nitrates								
	when freshly prepared FeSO ₄ solution is added to aqueous solution of $NO_3^-$								
	followed by addition of $conH_2SO_4$ . Select correct statement about this								
	complex.								
	1) Colour change is due to charge transfer								
	2) It has iron in +1 oxidation sate and nitosyl as $NO^+$								
	3) It has magnetic of 3.87 BM confirming three unpaired electrons in								
	4) All are correct statements								
34.	The yellow coloured solution of chromate salt changes to orange colour on								
	acidification due to the formation of								
	1) $\operatorname{Cr}^{3+}$ 2) $\operatorname{Cr}_2 \operatorname{O_7}^{2-}$ 3) $\operatorname{CrO_4}^{-}$ 4) $\operatorname{Cr}_2 \operatorname{O_3}$								
35.	Blue solution of $CuSO_4$ on treatment with excess KCN gives colourless								
	solution due to the								
	1) Formation of CuCN								

	2) Formatio	n of Cu(	OH) ₂							
	3) Formatio	n of	[Cu(C	$\left[N\right)_{4}\right]^{2-}$						
	4) $Cu^{2+}$ is	reduced	by CN⁻	to Cu ⁺ w	hich for	ms con	plex	[Cu(Cl	N) ₄ ] ³⁻	•
36.	Нуро	$\xrightarrow{VO_3}$ wh	ite ppt	$\xrightarrow{Hypo}$ so	oluble c	omplex	x. the	e x is		$\mathbf{\Lambda}$
	1) $Na_2S_2O_3$				2) ^{Na}	$u_2 \Big[ Fe \Big( \Big) \Big]$	$CN)_6$	]		
	3) $Na_3 [A_8]$	$\left(S_2O_3\right)_2$	]		4) <i>Na</i>	$a_2 S_4 O_8$		C		
37.	Which of the	e followii	ng cann	ot be detec	ted by	AgNO3	, in qu	alitativ	e anal	ysis?
	1) NaCl	2)	NaBr	3) Na	aF		4) KC	21		
						0				
				KEY	Y					
1) 1	2) 3	3) 1	4) 1	5) 1	6) 3	7) 2	8) 2	9) 1	10) 2	
11) 1	12) 2	13) 4	14) 1	15) 2	16) 4	17) 4	4	18) 2		19) 3
20) 2	21) 2	22) 1	23) 1	24) 2	25) 3	26) 1	27) 3	3 28) 2	29) 4	30) 3
31) 3	32) 1	33) 4	34) 1	35) 4	36) 3	37) 3				
	2	•								
	N									
	2									

# Werner Theory of Co-Ordination Compounds

- 1. The groups satisfying the secondary valencies of a cation in a complex are called
  - 1) Radicals
  - 2) Electron deficient Molecules
  - 3) Primary valencies
  - 4) Ligands

#### 2. The primary valence of the metal ion is satisfied by

- 1) Neutral molecules 2) Positive ions
- 3) Negative ions4) All

#### **3 IUPAC** name of the complex is

- 1) Cobalt trichloride penta amonium
- 2) Penta amine carbonyl chloride
- 3) Trichloro penta amino cobalt
- 4) Pentamine chloro cobalt chloride
- 4. No of ionizable & non-ionizable ions in reprehensively are

1) 3, 0 2) 2, 1 3) 1, 2 4) 0, 3

5. Silver Chloride dissolves in excess ammonia due to the formation of a soluble complex whose formula is

1) [Ag (NH₃] Cl 2) [Ag (NH₃)₂] Cl

3) [Ag (NH3)3]Cl 4) [Ag (NH3)4] Cl

6. Copper sulphate solution forms blue coloured complex with excess of ammonia. Its formula is

7.	Zn ⁺² dissolve in excess of NaOH due to the formation of								
	1) Soluble $Zn (OH)_2$	2) Solub	le Na ₂ [Zn (OH)	94]					
	3) Soluble Na (Zn (O	H)3] 4) ZnO							
8.	Which of the following cannot act as a ligand?								
	1) BF ₃ 2) NH ₃ 3)	NO ⁺ 4) CN ⁻		$\sim$					
9.	Which of the following is not a drawback of Werner's theory?								
	1) Does not explain the	e valency of me	tal ions in the co	omplex					
	2) Does not give any	explanation for the	he colour of con	plex compounds					
	3) Does not explain the	e magnetic beha	viour of comple	x compounds					
	4) Does not correlate	e electronic conf	figuration of the	metal with the formation of					
	complex		0						
10	The primary and sec	condary valency	⁷ of Co in the co	mplex respectively are					
	1) 6 & 3 2) 3	& 6 3)	4 & 3	4) 3 & 5					
11.	Number of ions satis	fying both prim	nary and second	lary valency are in					
	1) 1 2) 2	3)	3	4) 4					
12	Pick out the incorrec	et statement.							
	i) Primary valency o	f a transition m	netal ion in com	plex represents its oxidation					
	number.								
	ii) $Zn^{2+}$ is colorless.	<b>J</b>							
	iii) $MnCl_2$ exhibit gro	en color in aque	ous solution.						
	iv) Fe, Co, Ni are exa	mples of diamag	netic in nature.						
	1) Only i, ii	2) Only ii							
	3) Only iii,iv	4) Only iv							
13.	When one mole of a	complex is trea	ted with excess	of solution, 143.5 g of white					
	precipitate is formed	the complex is							
	1) <i>CoCl</i> ₃ .6 <i>NH</i> ₃ 2) <i>C</i>	oCl ₃ .5NH ₃							
	3) $CoCl_3.4NH_3$ 4) $CoCl_3.3NH_3$								

**Valency Bond Theory and Shapes of Coordination Compounds** 

14. The shape of the complex species will be square planar if its coordination number is

1) 2 2) 6 3) 5 4) 4

15. Which one of the following acts as a Lewis base in complexes?

1) CO₂ 2) BF₃ 3) NH₃ 4) BCl₃

- 16 Which of the following is inner orbital complex?
  - 1)  $[CoF_6]^{-3}$
  - 2)  $[Cu(H_2O)_6]^{+2}$
  - 3)  $[Co(NH_3)_6]^{+2}$  4) All
- **17.**  $sp^3d^2$  hybridisation is present in
  - 1)  $[CoF_6]^{-3}$  2)  $[Ni(CO)_4]$
  - 3)  $[Co(NH_3)_6]^{+2}$  4) All

#### The shape of is 18.

- 1) Square Planar 2) Trigonal bipyramidal
- 4) Tetrahedral 3) Octahedral

#### 19. Match the following.

#### Set -I

#### Set -II

A) Co-ordination number 3 B) Co-ordination number 2 C) Co-ordination number 5 3) Linear D) Co-ordination number 7 4) Trigonal planar The correct matching is В С D

1

А 1) 4 3 2

- 1) Pentagonal bipyramidal
- 2) Trigonal bipyramidal

- **20.** The hybrdisation of the complex is  $[NiCl_4]^{-2}$

1)  $sp^3$  2)  $dsp^2$  3)  $sp^3d$  4)  $sp^3d^2$ 

**21.** The hybridsation of the complex is  $[Cu(NH_3)_4]^{+2}$ 

1)  $sp^3$  2)  $sp^3d$  3)  $dsp^2$  4)  $sp^3d^2$ 

- **22.** The hybrdisation of the complex is  $Fe(CO)_{5}$ 
  - 1)  $sp^{3}d^{2}$  2)  $dsp^{3}$  3)  $sp^{3}$  4)  $d^{2}sp^{3}$

## **Bonding and Effective Atomic Number**

ĊC

- **23.** The effective atomic number of iron ion is  $\left[Fe(CN)_{6}\right]^{3-1}$ 
  - 1. 34 2. 36 3. 37 4. 35
- 24. Which does not obey EAN rule
  - 1)  $Fe(CO)_5$  2)  $K_4[Fe(CN)_6]$
  - 3)  $\left[Cu(NH_3)_4\right]SO_4$  4)  $\left[Co(NH_3)_6\right]Cl_3$
- 25. The effective atomic number of central metal ion is wrongly calculated in the following complex?
  - 1. In  $[Ni(CO)_4]$  the EAN of Ni is 36
  - 2. In  $K_2[Ni(CN)_4]$  the EAN of Ni is 36
    - 3. In  $K_3 \left[ Fe(CN)_6 \right]$  the EAN of Fe 35
    - 4. In  $\left[Cr(NH_3)_6\right]Cl_3$  the EAN of Cr is 33

#### **Crystal Field Theory**

- 26. The crystal field splitting energy for octahedral complex (Δ_o) and tetrahedral complex (Δ_t) are related as
  - 1)  $\Delta_t = \frac{4}{9} \Delta_o$  2)  $\Delta_t = 0.5 \Delta_o$
  - 3)  $\Delta_t = 0.33\Delta_o \qquad 4) \ \Delta_t = \frac{9}{4}\Delta_o$
- 27. Which of the following is a correct Irving-Williams order? (Tendency of complex formation)

1) 
$$Mn^{2+} < Fe^{2+} < Co^{2+} < Ni^{2+}$$

- 2)  $Ni^{2+} < Co^{2+} < Fe^{2+} < Mn^{2+}$
- 3)  $Fe^{2+} < Mn^{2+} < Ni^{2+} < Co^{2+}$
- 4)  $Co^{2+} < Mn^{2+} < Fe^{2+} < Ni^{2+}$
- 28. Which order is correct in spectrochemical series of ligands?

1) 
$$Cl^{-} < F^{-} < C_2 O_4^{2^-} < NO_2^{-} < CN^{-}$$
  
2)  $CN^{-} < C_2 O_4^{2^-} < Cl^{-} < NO_2^{-} < F^{-}$   
3)  $C_2 O_4^{2^-} < F^{-} < Cl^{-} < NO_2^{-} < CN^{-}$   
4)  $F^{-} < Cl^{-} < NO_2^{-} < CN^{-} < C_2 O_4^{-2^-}$ 

#### **Isomerism in Complexes**

29. The property of possessing at least one atom that is attached to four nonidentical groups is called

- 1. Polarization
  - 2. Chirality

zilon

10,8

3. Enantiomerism 4. Meridionity

#### **30.** A racemic mixture has a net rotation

- 1. To right of original plane
- 2. To left of original plane
- 3. To right or left of original plane
- 4. Zero

#### 31. Optical isomer has

- A) Property of chirality
- B) Almost identical chemical properties
- C) Almost identical physical properties
- D) Similar rotation of plane polarised light
- 1. A, B, C are correct.
- 2. B, C, D are correct.
- 3. A, C, D are correct.
- 4. A, B, D are correct.

MAN

#### **Application of Complexes in Qualitative Analysis**

,n.

32. The central metal ion in haeme is

1)  $Fe^{+2}$  2)  $Co^{+3}$  3)  $Mn^{+2}$  4)  $Mg^{+2}$ 

33. The central metal present in chlorophyll is

1) Mg 2) Co 3) Fe 4) Ca

- 34. Nessler's reagent is
  - 1)  $K_2HgI_4$  2)  $K_2HgI_2$
  - 3)  $K_2HgCl_4$  4)  $HgI_2$
- **35.** The metal ion present in Vitamin B₁₂ is.....
  - 1)  $Co^{3+}$  2)  $Co^{2+}$  3)  $Fe^{2+}$  4)  $Fe^{3+}$
- 36. The coordination number of Fe (II) in Oxyhaemoglobin is .....
  - 1)6 2)4 3)8 4)10

Key

1) 4	2) 3	3) 4 4) 2	2 5) 2	6) 2	7) 2	8) 1	9) 1	10) 2
11) 1	12) 3 1	3) 3 14)	4 15) 3	16) 3	17) 1	18) 3	19) 1	20) 1
21) 3	22) 2 2	3) 4 24) 3	3 25) 2	26) 1	27) 1	28) 4	29) 2	30) 4
31) 1	32) 1	33) 1	34) 1	35) 1	36) 1			