Atomic & molecular weights, mole concept and

Equivalent Weights

- 1. The smallest particle of an element that takes part in a chemical reaction is an atom.
- 2. The smallest particle of a substance that can exist in the free State is a molecule.
- 3. Atomic weight or atomic mass of an element is a relative mass and is expressed in Atomic mass units or atomic weight units (a.m.u. or u).
- 4. The latest standard for determining Atomic masses is ${}_{6}C^{12}$ which is assigned a mass of 12 a.m.u. So, one a.m.u. is 1/12 part of the mass of ${}_{6}C^{12}$ atom.
- 5. One a.m.u. is also known as one Dalton or one Aston or Avogram.

1 a.m.u=1.66X10⁻²⁴gm

6. Atomic mass of an element is the average of the isotopic masses (in a.m.u) of the Isotopes present in it.

E.g. Natural Neon consists of two Isotopes with Isotopic masses 20 and 22 in the percentage abundance of 90: 10.

Hence the Atomic mass of Neon = $(90 \times 20 + 10 \times 22)/100 = 20.2$

- 7. Molecular weight (or) Molecular mass is also a relative mass expressed in a.m.u..
- 8. The numerical value of the molecular mass expressed in grams is called a gram molecular weight or a gram molecule or a gram mole or a molar mass or a mole of that substance.
- **E.g.**: 1 mole of oxygen is 32g of oxygen.

1 mole of Nitrogen is 28g of Nitrogen.

9. Number of moles (n) = mass of the substance/molar mass.

- 10. One mole of any substance (or one mole of a mixture of substances) contains the same number of molecules namely 6.023×10^{23} molecules. This number is known as Avogadro number (N).
- 11. One mole of any gas or Vapour (or a mixture of gases) at STP occupies a volume of 22.4 litres. This is known as Gram Molar Volume (G.M.V.)
- 12. One mole = Numerical value of the molecular weight of the substance expressed in grams. = mass of 6.023×10^{23} molecules of the substance

= mass of 22.4 lit of gas (or) vapour at STP

*No. of molecules in 1cc of a gas at S.T.P= 2.67×10^{19} .

13. The numerical value of the atomic weight of an element expressed in grams is known as a gram atomic weight (GAW) or a gram atom of that element.

E.g.: One gram atom of carbon =12 grams of carbon

- 14. One gram atom of any element contains 6.023×10^{23} atoms of the element.
- 15. Number of gram atoms (n) = Mass of element/ gram atomic weight.
- 16. One gram -atom = Numerical value of the atomic weight of the element expressed in grams = Mass of 6.023×10^{23} atoms of the element.
- 17. Mass of one atom= GAW/6.023 \times 10²³.
- 18. The numerical value of the formula weight of an ion expressed in grams is called one gram ion.

One gram - ion or a mole of ions contains 6.023×10^{23} ions.

19. A mole of molecules means 6.023×10^{23} molecules, a mole of atoms means 6.023×10^{23} atoms and a mole of ions means 6.023×10^{23} ions.

Density of the gas

20. Vapour density of a gas or vapour = $\overline{Density of Hydrogen}$

21. The ratio of densities, the ratio of vapour densities and the ratio of molecular weights of two gases are equal.

con

$$\frac{\mathrm{d}_{\mathrm{A}}}{\mathrm{d}_{\mathrm{B}}} = \frac{\mathrm{D}_{\mathrm{A}}}{\mathrm{D}_{\mathrm{B}}} = \frac{\mathrm{M}_{\mathrm{A}}}{\mathrm{M}_{\mathrm{B}}}$$

- 22. Molecular weight = density of the gas at STP in $g/L \times 22.4$
- 23. Vapour density of a gas = density of the gas at STP \times 11.2
- 24. Molecular weight = $2 \times$ vapour density.
- 25. Equivalent weight of an element =Atomic weight/valency.

Element	Atomic	Valency	Equivalent
	Mass		Weight
Hydrogen	1	1	1
Sodium	23	1	23
Magnesium	24	2	12
Aluminium	27	*3	9
Carbon	12	4	3
Zinc	65.4	2	32.7
Silver	108	1	108
Oxygen C	16	2	8
Chlorine	35.5	1	35.5
Nitrogen	14	3	4.67
Phosphorus	31	3	10.33
Potassium	39.1	1	39.1
Sulphur	32	2	16
Bromine	80	1	80

26. In a balanced chemical equation, always two substances are in 1:1 ratio of their equivalents.

- 27. The equivalent weight of a substance need not necessarily be a fixed value.
- Formula weight 28. Equivalent weight of an acid = Basicity

	<u>Equivalent weig</u> l	<u>ids</u>		
Acid	Formula	Formula	Basicity	Equivalent
		Weight	G	Weight
Hydrochloric acid	HCl	36.5	1	36.5
Sulphuric acid	H ₂ SO ₄	98	2	49
Nitric acid	HNO ₃	63	1	63
Acetic acid	СН ₃ СООН	60	1	60
Oxalic acid	H ₂ C ₂ O ₄ .2H ₂ O	126	2	63
Phosphoric acid	H ₃ PO ₄	98	3	32.67
Phosphorous acid	H ₃ PO ₃	82	2	41
Hypo phosphorus acid	H ₃ PO ₂	66	1	66
Perchloric acid	HClO ₄	100.5	1	100.5
	Formula wei	ight of base		

29. Equivalent weight of base = Acidity of base

www.sakshieducation.com

Equivalent weights of some bases

Base	Formula	Formula Weight	Acidity	Equivalent Weight	
Sodium hydroxide	NaOH	40	1	40	
Potassium hydroxide	КОН	56	1	56	
Calcium hydroxide	Ca (OH) ₂	74	2	37	
Aluminium hydroxide	Al (OH) ₃	78	3	26	
Ferrous hydroxide	Fe (OH) ₂	90	2	45	
Ferric hydroxide	Fe (OH) ₃	107	3	35.67	
Ammonium hydroxide	NH ₄ OH	35	1	35	
Chromic hydroxide	Cr (OH) ₃	103	3	34.33	
30. Equivalent weight of s	alt	2			
$E_{salt} = \frac{Formula}{Total charge of the}$ $E_{Al2(SO4)3 = F/6 = 342/6} = 57$	weight of the salt cation or anion of the	e salt			
31. Equivalent weight of l	$\frac{\text{Formula }}{\text{Charge}/V}$	$\frac{\text{weight}}{\text{valency}}$, $E_{\text{Fe}^{+2}} =$	$\frac{56}{2} = 28$		
32. Equivalent weight of oxidising agent = $\frac{\text{Formula weight of oxidant}}{\text{Electrons gained by one molecule of oxidant}}$					
E.g.: KMnO ₄ acts as	oxidant in acidic	, basic and also in	n neutral mediu	m.	
1. In acidic medium :	$KMnO_4 + 8H^+ + 5e$	$e^- \rightarrow K^+ + Mn^{2+} + 4H$	2 ⁰		
One molecule of KM	nO4 gains five	e electrons. Hend	ce, the equiva	lent weight of	
KMnO ₄					

Mol.wt.of $KMnO_4$

= 158.04

 $=\frac{\text{Mol.wt.of KMnO}_{4}}{5} = \frac{158.04}{5} = 31.608$

2. In neutral as well as weakly basic medium:

 $KMnO_4 + 2H_2O + 3e^- \rightarrow K^+ + 4OH^- + MnO_2$

One molecule of KMnO₄ gains three electrons.

Hence the equivalent weight of

 $KMnO_4 = \frac{Mol.wt.of KMnO_4}{3} = \frac{158.04}{3} = 52.68$

3. In strongly alkaline medium: $MnO_4^- + e^- \rightarrow MnO_4^{2-}$

Then the equivalent weight of KMnO₄

33. Equivalent weight of reducing agent

Ereductant Electrons lost by one molecule of reductant

Mohr's salt is ferrous ammonium sulphate

Formula = $FeSO_4$ (NH₄)₂SO₄. 6H₂O

Formula weight = 392

 $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$

The equivalent weight of Mohr's salt is 392/1 = 392