www.sakshieducation.com <u>Alkali Metals</u>

Synopsis

- * Lithium (Li), Sodium (N1), Potassium (K), Rubidium (R2), Cesium (Cs) and Francium (Fr) are called Alkali metals.
- Francium is highly radioactive. Its longest-lived isotope ²²³Fr has a half-life of only 21 minutes.
- * Oxides of these metals dissolve in water giving strong alkalis. So these elements are known as alkali metals.
- * Abundance: The abundance in earth crust decreases with the increase in atomic weight.
- * Electronic configuration: These elements belong to s-block and their valence shell configuration is ns¹.
- * No element contains 18 electrons in their (n-1) shell.
- * Atomic volume: Atomic volume of alkali metals is highest in each period and goes on increasing down the group

 Element
 Li
 Na
 K
 Rb
 Cs

 GMV in cm³
 13
 24
 46
 56
 71

- * Density: These elements have low densities when compared with the other metals.
- * Potassium is less dense than sodium due to
 - 1. Sudden large increase in the atomic size from Na to K.
 - 2. The presence of vacant d-orbitals
 - 3. Large interOatomic distances in the crystal lattice.
- * Most electro positive element is Cs.
- * Hardness: These are soft metals. Softness further increases down the group due to decrease in the strength of metallic bond.
- * Valency & oxidation states: The alkali metal atoms show only +1 oxidation state, because their unipositive ions have the stable inert gas configuration $(s^2 or s^2 P^6)$ in the valence shell.
- * **Nature:** Alkali metal ions (in the form of salts) are colorless and diamagnetic, since all the electrons are paired. Some of their compounds like $K_2Cr_2O_4$, $KMnO_4$ are colored which is due to their oxyanions.

- * Second ionization potential values of alkali metals are very high, because the second electron is to be removed from the ion with stable inert gas configuration.
- * **Flame Test:** Alkali metals and their salts give flame colouration when heated with conc. HCl in Bunsen flame.
- * Exhibit colour due to absorption of visible light.
- * The characteristic flame colours of alkali metals are

Metal	Colour	λ in A^0
LI	Crimson red	6708
Na	Golden Yellow	5890
Κ	Lilac Blue	4404

- Rb Red-Violet 4202
- Cs Blue-Violet 4556
- * The melting points order is
 - Li > Na > K > Rb > Cs
- * The boiling points order is

- * The increasing order of SRP values of alkali metals is Li < Cs < Rb < K < Na
 (SRP values -ve)
- * The hydration enthalpies of alkali metal ions decrease with increase in ionic sizes. $Li^+ > Na^+ > K^+ > Rb^+ > Cs^+$
- * Alkali metals when dissolved in liquid ammonia in the absence of impurities form a deep blue colored solution.

$$M + (x + y) NH_{3} \rightarrow \left[M \left(NH_{3} \right)_{x} \right]^{+} + \left[e \left(NH_{3} \right)_{y} \right]^{-}$$

- * The blue colour of the solution is due to ammoniated (solvate4) electrons.
 (Note: In concentrated solution, the blue colour changes to bronze colour and become diamagnetic due to cluster formation).
- * The solutions are paramagnetic and on standing slowly liberated hydrogen resulting in the formation of amide.

 $M^{+}_{\scriptscriptstyle (am)} + e^{-} + NH_3(liq) \rightarrow MNH_{2(am)} + 1/2H_2(g)$

* The electrical conductivity of these solutions is by the movement of ions as well as electrons. Hence they are called mixed conductors.

www.sakshieducation.com

- * Due to the presence of free electrons, these solutions act as powerful reducing agents.
- * The reactivity with water increase on descending the group from Li to Cs and Li<Na<K<Rb<Cs due to increase in electropositive character in the same order.
- * Ionic nature, reducing nature, solubility, basic nature increases from LiH to CsH.
- * LiH is thermally more stable

LiH > NaH > KH > RbH > CsH

* With oxygen (Oxides): When alkali metals are heated in air, Li mainly gives Li_2O , sodium mainly gives sodium peroxide (Na_2O_6) and others give super oxides.

 $(KO_2, RbO_2, CsO_2).$

* Peroxides (O_2^{2-}) are the salts of H_2O_2 . Therefore metal peroxides will give H_2O_2 on reaction with water or dil.acids.

 $Na_2O_2 + 2H_2O \rightarrow 2NaOH + H_2O_2$

* Concentrated peroxide solutions will give O_2 on reaction with water

 $2Na_2O_2 + 2H_2O \rightarrow 4NaOH + O_2$

- * Na_2O_2 forms octahydrate crystals $Na_2O_2.8H_2O_2$
- * Na_2O_2 is also known as oxone.
- * Even K_2O_2 can be used for the same purpose and it is much better than Na_2O_2
- * Na_2O_2 is used in qualitative analysis in the identification of chromium salts as it forms yellow colored chromate salts.

$$3Na_2O_2 + 2Cr(OH)_3 \rightarrow 2Na_2CrO_4 + 2NaOH + 2H_2O$$

* Super oxides are coloured and paramagnetic due to the presence of unpaired electron or odd electron bond.

Resonance structures of superoxide ion (O_2^-)

- * Super Oxides are paramagnetic in nature.
- * LiO_2 And NaO_2 are yellow in colour and are highly unstable.
- * KO_2 And CsO_2 are orange but RbO_2 is brown coloured.

- * Li_2O_2 is white, Na_2O_2 and Cs_2O_2 are yellow coloured. Rb_2O_2 is dark brown, K_2O_2 is orange coloured.
- * The monoxides of Li, Na and K are colour less. But the monoxides of Rb and Cs are coloured.

 Rb_2O -Yellow: Cs_2O -Orange.

- * The solubility of the hydroxides increases from *LiOH* to *CsOH*
- * Cesium halides have body centered cubic lattice.
- * *Li*⁺ has maximum degree of hydration and for this reason lithium salts are mostly hydrated

E.g. LiCl. 2 H_2O

- * The solubilities of bicarbonates in water is less than that of the carbonates.
- * $NaHCO_3$ is sparingly soluble in water while Na_2CO_3 is water soluble.
- * Except Li_2CO_3 the other carbonates are stable and they decomposing only at very high temperatures. $Li_2CO_3 \rightarrow Li_2O + CO_2$
- * The stability increases from Li_2CO_3 to Cs_2CO_3
- * Thermal stability of alkali metal carbonates increases from Li_2CO_3 to Cs_2CO_3 . It is because of an increase in the size of cation.
- * In alkali metals Li exhibit anomalous behavior. Due to
 - 1. Exceptionally small atomic and ionic size and
 - 2. High polarizing power (i.e. change/radius ration)
 - 3. Lack of presence of vacant d-orbitals
- * Lithium shows diagonal relationship with magnesium.
- * Alkyl lithium's are similar to Grignard reagents
 - **Sodium:** It is the most abundant element in 1-A group.
- * It is used in the preparation of compounds like Na_2O_2 , $NaNH_2$, NaCN etc.
- * Na-Pb alloy is used in the preparation of tetraethyl lead (TEL) which is used as antiknocking agent in petrol.

Potassium (K)

- * Na^+ and K^+ play important role in Biology.
- * 20% NaOH is formed in the central compartment.

www.sakshieducation.com

Reactions during electrolysis Ionisation of brine: $NaCl \rightarrow Na^+ + Cl^-$ At graphite anode: $2Cl^- \rightarrow Cl_2^- + 2e^-$ At Hg cathode: $Na^+ + e^- + Hg \rightarrow Na - Hg$ At Hg anode: $Na - Hg \rightarrow Na^+ + e^- + Hg$ At Fe cathode: $2Na^+ + 2e^- + 2H_2O \rightarrow 2NaOH + H_2$ Instead of H_2 gas, sodium is formed in the outer compartments because the discharge potential of sodium is lowered in presence of Hg cathode.

Sodium Carbonate

- * Decahydrate sodium carbonate $(Na_2CO_3.10H_2O)$ is called washing soda or salt soda.
- * Anhydrous sodium carbonate is called soda ash or soda.
- * It is prepared by
 - 1. Solvay or ammonia soda process.
- * Solvay process or Ammonia soda process:
 - Raw materials: Brine, limestone, little NH₃
 - By-product: CaCl₂
 - Intermediate product: NaHCO₃

Recycled products: NH_3 and CO_2

Impurities in Brine solution: Calcium & Magnesium salts.

These are removed in the form of carbonate precipitates.

Precipitation of *NaHCO*₃ in Carbonation tower is due to common ion effect.

Solution from carbonation tower Consists of: NaHCO₃ and NH₄Cl

- * It is suitable method to prepare Na_2CO_3 because of low solubility of $NaHCO_3$.
- * K_2CO_3 cannot be manufactured by Solvay's process because *KHCO*₃ is more soluble in water.
- * $Na_2CO_3.10H_2O \rightarrow Na_2CO_3.7H_2O \rightarrow Na_2CO_3.H_2O$

* It's aqueous solution is basic due to hydrolysis of CO_3^{2-}

 $CO_3^{2-} + H_2O \rightarrow HCO_3^- + OH^-$

 $CO_3^{2-} + 2H_2O \rightarrow H_2CO_3^- + 2OH^-$

* It liberates CO_2 when treated with mineral acids stronger than H_2CO_3 acid.

 $Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$

 $Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O + CO_2$

* It reacts with sulphur and SO_2 to give hypo

$$Na_2CO_3 + SO_2 \rightarrow Na_2SO_3 + CO_2$$

 $Na_2SO_3 + S \rightarrow Na_2S_2O_3$

* When fused with silica it gives sodium silicate or water glass.

 $Na_2CO_3 + SiO_2 \rightarrow Na_2SiO_3 + CO_2$

* It causes the precipitation of salt solution as their carbonates.

 $MgCl_2 + Na_2CO_3 \rightarrow MgCO_3 + 2NaCl$

 $ZnSO_4 + Na_2CO_3 \rightarrow ZnCO_3 + Na_2SO_4$

- * It is used in the manufacture of glass, caustic soda and water glass, Borax, Soap power.
- * It is used for softening of water.
- * It is used in laundries, paper and in dye industry.
- * It is used in sizing of paper.
- * It is used in petroleum refining.
- * It is used in preparation of ultramarine.
- * Sodium bicarbonate or Baking soda $(NaHCO_3)$
- * It is prepared by Solvay's process.
- * It is also obtained by saturating Na_2CO_3 solution with CO_2
- * It is a white crystalline substance preparation

 $Na_2CO_3 + CO_2 + H_2O \rightarrow 2NaHCO_3$

- *NaHCO*₃ Solution gives yellow colour with methyl orange and it does not give any colour with phenolphthalein.
- * It is used as a fire extinguisher.
- * It is used as an antacid.

- It is used in making baking powders. *
- * It is used in the preservation of butter.
- * It is used in the treatment of wool and silk.
- * It is used in effervescent drinks.

www.saksheducation.cot