Kinetic Molecular Model of Gas

1. The kinetic gas equation for $\mathbf{1}$ mole of a gas
1) $P V=\frac{1}{3} m C^{2}$
2) $P V=\frac{1}{3} M C^{2}$
3) $P V=\frac{1}{3} C^{2}$
4) $P V=\frac{1}{3}(m C)^{2}$
2. At the same temperature and pressure which of the following gas will have highest K.E per mol.
1) H_{2}
2) O_{2}
3) CH_{4}
4) Same for all
3. The molecular velocities of two gases at the same temperature are U_{1} and U_{2} their masses are m_{1} and m_{2} respectively. Which of the following expression is correct?
1) $\frac{m_{1}}{U_{1}^{2}}=\frac{m_{2}}{U_{2}^{2}}$
2) $m_{1} U_{1}=m_{2} U_{2}$
3) $\frac{m_{1}}{U_{1}}=\frac{m_{2}}{U_{2}}$
4) $m_{1} U_{1}^{2}=m_{2} U_{2}^{2}$
4. The ratio of kinetic energies of equal weights of CH_{4} and SO_{2} gases under similar conditions is
1) $1: 1$
2) $2: 1$
3) $4: 1$
4) $1: 2$

Hint: KE1:KE2=n1:n2
5. At what temperature the velocity of SO_{2} molecule is same as velocity of O_{2} molecule at $27^{\circ} \mathrm{C}$

1) $127^{\circ} \mathrm{C}$
2) $327^{\circ} \mathrm{C}$
3) $927^{\circ} \mathrm{C}$
4) $527^{\circ} \mathrm{C}$

Hint: T1/M1=T2/M2
6. The velocity distribution curve is given below. The correct statement regarding it is

1) As temperature increases the fraction of the molecular having C_{P} increases
2) $T_{1}>T_{2}$
3) At any temperature $C_{P}=\bar{C}$
4) A small fraction of the molecules have very low
 velocities
7. SO_{2} molecules is $\mathbf{3 2}$ times heavier than hydrogen molecules. What will be the ratio of their average kinetic energies at $\mathbf{4 2 0 K}$
1) $16: 1$
2) $32: 1$
3) $1: 32$
4) $1: 1$

Hint: K.E of molecule is same for all gases at a given temperature.
8. The average velocity of a gas at 273 K is $7.5 \times 10^{4} \mathrm{~cm} / \mathrm{s}$. What is its r.m.s. velocity at the same temperature

1) $8.13 \times 10^{4} \mathrm{~cm} / \mathrm{s}$
2) $6.9 \times 10^{4} \mathrm{~cm} / \mathrm{s}$
3) $6.124 \times 10^{4} \mathrm{~cm} / \mathrm{s}$
4) $9.9 \times 10^{4} \mathrm{~cm} / \mathrm{s}$

Hint: $\mathrm{C}=1.128 \times \overline{\mathrm{C}}$
9. In the kinetic gas equation ' n ' represents

1) Number of molecules
2) Number of moles
3) An integer including zero
4) A constant
10. A cubical vessel of side length 2 cm contain 100 molecules with mass of each molecule as $2 \times 10^{-27} \mathrm{~g}$. If the r.m.s. velocity of the molecules is $4 \times 10^{4} \mathrm{~cm} / \mathrm{s}$, what is the rate of change of momentum
1) 3.2×10^{-19} dyne $/ \mathrm{cm}^{2}$
2) 3.2×10^{19} dyne / cm ${ }^{2}$
3) 3.2×10^{18} dyne / cm ${ }^{2}$
4) 3.2×10^{-16} dyne $/ \mathrm{cm}^{2}$

Hint: The rate of change of momentum $=m n c^{2}$

www.sakshieducation.com

11. The correct statements regarding max well - Boltzmann velocity distribution curve (that is given below)
a) $T_{1}>T_{2}$
b) As the temperature increases the fraction of the molecules having most probable velocity decreases
c) As the temperature increases the value of C_{P} increases

d) As the temperature increases r.m.s. velocity of the gas decreases

The correct answer is

1) All are correct
2) Only a, b and d
3) Only b and c
4) Only a, b and c
12. The average velocity of a gas is $100 \mathrm{~m} / \mathrm{s}$. At the same temperature what is its r.m.s. velocity
1) $112.8 \mathrm{~m} / \mathrm{s}$
2) $92.13 \mathrm{~m} / \mathrm{s}$
3) $81.66 \mathrm{~m} / \mathrm{s}$
4) $88.66 \mathrm{~m} / \mathrm{s}$

Hint: $\mathbf{C}=\mathbf{1 . 1 2 8} \times \overline{\mathrm{C}}$
13. R.M.S. velocity of a gas molecule is given by

1) $\sqrt{\frac{3 R T}{\pi M}}$
2) $\sqrt{\frac{3 K T}{m}}$
3) $\sqrt{\frac{8 R T}{\pi M}}$
4) $\sqrt{\frac{3 P V}{T}}$
14. At what temperature the r.m.s. velocity of nitrogen gas is twice the most probable velocity of Helium gas at $27^{\circ} \mathrm{C}$
1) $5327^{\circ} \mathrm{C}$
2) $5600^{\circ} \mathrm{C}$
3) 400 K
4) 600 K

Hint: $\frac{\mathrm{C}_{\mathrm{N}_{2}}}{\mathrm{C}_{\mathrm{p}} \text { ofHe }}=\frac{\sqrt{3 \mathrm{RT}_{1} / \mathrm{M}_{\mathrm{N}_{2}}}}{\sqrt{\frac{2 \mathrm{RT}_{2}}{\mathrm{M}_{\mathrm{He}}}}}$
15. The r.m.s. velocity of carbon dioxide gas at $167^{\circ} \mathrm{C}$ is \mathbf{m} / s

1) 500
2) 5000
3) 50
4) 50,000

Hint: ${ }^{1.58 \times 10^{4}} \sqrt{\frac{\mathrm{~T}}{\mathrm{M}}} \mathrm{cm} / \mathrm{sec}$
16. What is the increase in K.E. of 10 moles of an ideal gas, when the temperature is increased by $10^{\circ} \mathrm{C}$

1) 200 cal
2) 300 cal
3) 600 cal
4) 900 cal

Hint: Increase in K.E= (3/2) nR (dT)
17. 1 litre vessel and 2 litre vessel contained 1 mole each of O_{2}, the temperature are so adjusted such that the velocity of molecules in 1 litre vessel is twice that of $\mathbf{2}$ litre vessel. At what ratio their pressures will be

1) $4: 1$
2) $8: 1$
3) $6: 2$
4) $1: 8$
18. At what temperature the rms velocity of oxygen is equal to the most probable velocity of SO_{2} at $27^{\circ} \mathrm{C}$
1) 100 K
2) 200 K
3) 400 K
4) 92.6 K

Hint: Refer q.no. 14
19. The K.E. of ' N ' molecules of CH_{4} is x Joules at $\mathbf{- 1 2 3 ^ { \circ }} \mathbf{C}$. another sample of CH_{4} at $27^{\circ} \mathbf{C}$ has K.E. of 2 x Joules. The latter sample contains

1) N molecules of CH_{4}
2) $\mathrm{N} / 2$ molecules of CH_{4}
3) 2 N molecules of CH_{4}
4) $\mathrm{N} / 4$ molecules of CH_{4}

Hint: KE1/KE2= n1 T1/n2T2
20. K.E. of one mole of gas is

1) 1.5 T Cal
2) 3 T Cal
3) 3 RT Cal
4) 4.5 RT Cal

Hint: $\mathrm{KE}=(3 / 2) \mathrm{RT}$
21. The ratio of kinetic energies of equal weights of CH_{4} at 100 K and SO_{2} at 400 K is

1) $4: 1$
2) $1: 4$
3) $1: 1$
4) $3: 4$

Hint: KE1/KE2 = M2 T1/M1T2
22. The temperature at which ethane molecules have the same average kinetic energy as that of methane molecules at $27^{\circ} \mathrm{C}$ is

1) $327^{\circ} \mathrm{C}$
2) $27^{\circ} \mathrm{C}$
3) $927^{\circ} \mathrm{C}$
4) $627^{\circ} \mathrm{C}$

Hint: K.E of molecule is same for all gases at a given temperature
23. R.M.S. velocity of O_{2} molecules at $27^{\circ} \mathrm{C}$ is $\mathrm{x} \mathrm{cm} / \mathrm{sec}$ at what temperature the velocity of O_{2} molecules become $2 \times \mathrm{cm} / \mathrm{sec}$

1) 600 K
2) $327^{\circ} \mathrm{C}$
3) $927^{\circ} \mathrm{C}$
4) $127^{\circ} \mathrm{C}$

Hint: $\frac{C_{1}}{C_{2}}=\sqrt{\frac{T_{1}}{T_{2}}}$
24. At what temperature the R.M.S. velocity of $C_{2} H_{4}$ molecules is same as that of N_{2} molecules at 300 K ?

1) $300^{\circ} \mathrm{C}$
2) $27^{\circ} \mathrm{C}$
3) 600 K
4) $927^{\circ} \mathrm{C}$

Hint: ${ }^{\frac{T_{1}}{M_{1}}=\frac{T_{2}}{M_{2}}}$
25. At 27° C the ratio of the R.M.S. velocities of ozone and oxygen molecules is

1) $\sqrt{\frac{2}{3}}$
2) $\sqrt{\frac{3}{2}}$
3) $\sqrt{\frac{1}{4}}$
4) $\sqrt{\frac{3}{5}}$

Hint: $\frac{C_{1}}{C_{2}}=\sqrt{\frac{T_{1} M_{2}}{T_{2} M_{1}}}, \mathrm{~T} 1=\mathrm{T} 2$
26. The R.M.S. velocity of an ideal gas at $0^{\circ} \mathrm{C}$ is $12240 \mathrm{~cm} / \mathrm{sec}$. Then its most probable velocity in $\mathrm{cm} / \mathrm{sec}$ at the same temperature

1) 11280
2) 10850
3) 10000
4) 1224

Hint: Most Probable velocity $=0.8166 \mathrm{X}$ r.m.s.
27. ' X ' is an oxide formed in the first excited state of sulphur. ' Y ' is a fluoride formed in the second excited state of sulphur. The ratio of average velocities of molecules of ' X ' and ' Y ' at $25^{\circ} \mathrm{C}$ and 1 atm is approximately (at. Wts. $\mathrm{O}=16, \mathrm{~F}=19, \mathrm{~S}=32$)

1) $3: 2$
2) $9: 10$
3) $2: 3$
4) $1: 2$

Hint: $\frac{C_{1}}{C_{2}}=\sqrt{\frac{T_{1} M_{2}}{T_{2} M_{1}}}, \mathrm{~T} 1=\mathrm{T} 2$
28. Boltzmann constant represents the gas constant per

1) One mole of gas
2)An Avogadro's number of molecules
3.) Any number of molecules
2) One molecule
29. According to kinetic theory, Kinetic Energy =
1) $\frac{4}{3} n R T$ (or) $\frac{1}{2} m v^{2}$
2) $\frac{2}{3} n R T$ (or) $\frac{3}{2} m v^{2}$
3) $\frac{3}{2} n R T$ (or) $\frac{1}{2} m v^{2}$
4) $\frac{3}{4} n R T$ (or) $2 m v^{2}$
30. Helium atom is two times heavier than a hydrogen molecule at $298^{\circ} \mathrm{K}$ the average kinetic energy of helium is
1) Two times that of hydrogen molecule
2) Same as that of a hydrogen molecule
3) Four times that of a hydrogen molecule
4) Half that of a hydrogen molecule

Hint: K.E of molecule is same for all gases at a given temperature
31. The value of Boltzmann constant is

1) 1.38×10^{-16} Joule. K^{-1}. Molecule ${ }^{-1}$
2) 1.38×10^{-23} erg. K^{21}. Molecule ${ }^{-1}$
3) 0.0821×10^{-16} Joule. K^{-1}. Molecule ${ }^{-1}$
4) $4.1 .38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$ molecule ${ }^{-1}$
32. The ratio between kinetic energies of 3 g of Hydrogen gas and $\mathbf{4 g}$ of Oxygen gas at a given temperature and pressure is
1) $3: 4$
2) $4: 3$
3) $12: 1$
4) $16: 1$

Hint: KE1: KE2=n1: n2
33. If the rms velocity of a gas is $\mathbf{1 0 0 0}$ metres/sec ; its most probable velocity under similar conditions in metres/sec

1) 1128
2) 816.6
3) $\frac{1224}{1000}$
4) $\frac{1000}{1224}$
34. Kinetic energy of 140 g of Carbon monoxide gas at $27^{\circ} \mathrm{C}$ in K .Cals is
1) 3.0
2) 6.0
3) 4.5
4) 9.0

Hint: KE= $(3 / 2) n R T$
35. The ratio of the kinetic energies of equal masses of CH_{4} and He at $27^{\circ} \mathrm{C}$ temperature is

1) $1: 1$
2) $1: 4$
3) $4: 1$
4) $2: 1$

Hint: $\mathrm{kE} 1: \mathrm{KE} 2=\mathrm{M} 2: \mathrm{M} 1$
36. The kinetic energy in K.Cals of $6.4 \mathbf{g m}$ of O_{2} at $27^{\circ} \mathrm{C}$ is

1) $1.8 \mathrm{~K} . \mathrm{Cals}$
2) $18 \mathrm{~K} . \mathrm{Cals}$
3) 180 K.Cals
4) 0.18 K.Cals
37. Kinetic theory of gases proves
1) Boyle's law
2) Charles's law
3) Avogadro's law
4) All these laws
38. Which of the following posses greatest amount of Kinetic energy
1) 4 gm of H_{2} at $27^{\circ} \mathrm{C}$
2) 32 gm of O_{2} at $0^{\circ} \mathrm{C}$
3) 16 gm of CH_{4} at $27^{\circ} \mathrm{C}$
4) 64 gm of O_{2} at $0^{\circ} \mathrm{C}$

Hint: KE is proportional to $\mathrm{n} \times \mathrm{T}$
39. Which of the following is not the statement of kinetic theory of gases

1) The kinetic energy depends on the temperature of the gas
2) The K.E. depends on pressure of the gas
3) The collisions are elastic

www.sakshieducation.com

4) Pressure of the gas is due to the collision of the gas molecules with the walls of the vessel
40. At what temperature will the total kinetic energy of 0.3 mole of He be the same as the total kinetic energy of 0.4 mole of Ar at 400 K
1) 400 K
2) 300 K
3) 373 K
4) 533 K

Hint: $\mathbf{n}_{1} \mathrm{~T} 1=\mathbf{n}_{\mathbf{2}} \mathrm{T} 2$

KEY

			$1)$	$\mathbf{2}$	$2)$	$\mathbf{4}$	$3)$	$\mathbf{4}$	$4)$	$\mathbf{3}$	$5)$	$\mathbf{2}$	$6)$	$\mathbf{4}$	$7)$	$\mathbf{4}$	$8)$	$\mathbf{1}$	
9$)$	$\mathbf{1}$	$10)$	$\mathbf{4}$	$11)$	$\mathbf{3}$	$12)$	$\mathbf{1}$	$13)$	$\mathbf{2}$	$14)$	$\mathbf{1}$	$15)$	$\mathbf{1}$	$16)$	$\mathbf{2}$	$17)$	$\mathbf{2}$	$18)$	$\mathbf{1}$
19$)$	$\mathbf{1}$	$20)$	$\mathbf{2}$	$21) \mathbf{3}$	$22)$	$\mathbf{2}$	$23)$	$\mathbf{3}$	$24)$	$\mathbf{2}$	$25)$	$\mathbf{1}$	$26)$	$\mathbf{3}$	$27)$	$\mathbf{1}$	$28)$	$\mathbf{4}$	
29$)$	$\mathbf{3}$	$30)$	$\mathbf{2}$	$31) \mathbf{4}$	$32)$	$\mathbf{3}$	$33)$	$\mathbf{2}$	$34)$	$\mathbf{4}$	$35)$	$\mathbf{2}$	$36)$	$\mathbf{4}$	$37)$	$\mathbf{4}$	$38)$	$\mathbf{1}$	
39$)$	$\mathbf{4}$	$40)$	$\mathbf{4}$																

