Graham's Law of Diffusion

1. Dalton's law of partial pressure is not applied for
1) $\mathrm{N}_{2}+\mathrm{CO}_{2}$
2) $\mathrm{NO}+\mathrm{O}_{2}$
3) $\mathrm{CO}_{2}+\mathrm{O}_{2}$
4) $\mathrm{O}_{2}, \mathrm{~N}_{2}$
2. A vessel contains Helium and Methane in 4: 1 molar ratio at 20 bar pressure. Due to leakage, the mixture of gases starts effusion. So the composition of mixture effused in the initial stage
1) $8: 1$
2) $2: 1$
3) $1: 1$
4) $1: 4$

Hint: ${ }^{\frac{r_{1}}{r_{2}}}=\frac{P_{1}}{P_{2}} \sqrt{\frac{M_{2}}{M_{1}}}$
3. Consider two flasks connected by a stopcock. One flask has a volume of $\mathbf{2 5 0} \mathbf{~ m l}$ and contains Neon gas at 650 torr and the other flask has a volume of $\mathbf{3 0 0} \mathbf{~ m l}$ and contains $\mathrm{O}_{2}(\mathbf{g})$ at 825 torr. If the stopcock is opened so that the two gases mix, calculate the partial pressure of Neon gas

1) 295 torr
2) 450 torr
3) 745 torr
4) 200 torr

Hint: P^{\prime} of Neon $=\mathrm{pXv}$ of neon/total volume
4. The ratio of rate of diffusion of He and Methane gases at given temparature is

1) $2: 1$
2) $1: 2$
3) $1: 4$
4) $4: 1$

Hint; $\frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}$
5. The principle involved in the separation of Uranium isotopes is

1) Dalton's law
2) Graham's law
3) Charles's law
4) Boyle's law
6. 4gm of Helium diffuses through a porous membrane in certain time the mass of sulphur dioxide that diffuses through the same porous membrane in the same time under similar conditions is
1) 8 gm
2) 16 gm
3) 4 gm
4) 2 gm

Hint: $\frac{w_{1}}{w_{2}}=\sqrt{\frac{M 1}{M 2}}$
7. A vessel contains hydrogen and oxygen in the volume ratio 2: 1. Due to a hole in the vessel the gas is effusing out. The volume ratio of H_{2} and O_{2} that is effusing out initially is

1) $1: 8$
2) $4: 1$
3) $8: 1$
4) $5600: 1$

Hint: ${ }^{\frac{r_{1}}{r_{2}}}=\frac{P_{1}}{P_{2}} \sqrt{\frac{M_{2}}{M_{1}}}$, , ${ }^{\prime}$ is proportional to ' \mathbf{n},
8. A vessel contains equal moles of Helium and sulphurdioxide. Due to a hole in the vessel half of the initial number of moles in the vessel effused out the molar ratio of helium and sulphurdioxide in the residual gas in the vessel is

1) $1: 1$
2) $1: 4$
3) $4: 1$
4) $1: 2$

Hint: $\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\sqrt{\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}}$, The molar ratio of residual gases is $\mathrm{R} 2: \mathrm{R} 1$
9. Vapour pressure of water at $60^{\circ} \mathrm{C}$ is $\mathbf{3 0 0} \mathbf{~ m} . \mathrm{m}$. 1 litre of vessel contained carbon dioxide saturated with water vapour at $60^{\circ} \mathrm{C}$ at a total pressure of 760 torrs. The contents of the vessel are completely transferred in to a 2 lit vessel at the same temperature the partial pressure of oxygen, water vapour and the total pressure in the second vessel are respectively (in mm)

1) $230: 150: 380$
2) $380: 150: 530$
3) $80: 300: 380$
4) $920: 600: 1520$

www.sakshieducation.com

Hint: $\quad V \alpha \frac{1}{P}$, aqueous tension remains same at given temparature
10. A vessel contains of equal weights of $\mathrm{He}, \mathrm{CH}_{4}, \mathrm{O}_{2}$ and SO_{2} gases at STP conditions the order of partial pressure of the gases

1) $P_{\mathrm{He}}>P_{\mathrm{CH}_{4}}>P_{\mathrm{O}_{2}}>P_{\mathrm{SO}_{2}}$
2) $P_{\mathrm{He}_{e}}<P_{C \mathrm{H}_{4}}<P_{\mathrm{O}_{2}}<P_{\mathrm{SO}_{2}}$
3) $P_{\mathrm{He}}<P_{\mathrm{CH}_{4}}<P_{\mathrm{O}_{2}}<P_{\mathrm{SO}_{2}}$
4) $P_{\mathrm{CH}_{4}}<P_{\mathrm{SO}_{2}}<P_{\mathrm{He}}<P_{\mathrm{O}_{2}}$

Hint: Partial pressure α number of moles
11. Equal volumes of b and He measured under the same conditions of temperature and pressure are mixed and transferred into a one litre vessel at the same temperature. Then the partial pressures of H_{2} and He are related as

1) $P_{H_{2}}=2 P_{\mathrm{He}}$
2) $P_{H_{2}}=\frac{P_{H e}}{2}$
3) $P_{\mathrm{H}_{2}}=P_{\mathrm{He}}$
4) $\frac{P_{H_{2}}}{4}=P_{H e}$

Hint: Partial pressures are in the ratio of their mole fractios.
12. 250 ml of SO_{2} diffused through a porous membrane is $\mathbf{1 6 s e c}$ under the similar conditions 500 ml of an unknown gas is diffused in 8 sec . The unknown gas may be

1. H_{2}
2) He
3) CH_{4}
4) O_{2}

Hint: $\frac{v_{1} t_{2}}{v_{2} t_{1}}=\sqrt{\frac{M_{2}}{M_{1}}}$
13. Two vessels of identical volumes were separately filled with CH_{4} at 2atm and O_{2} at 1 atm pressure at a constant temperature. The ratio of rates of diffusion CH_{4} to O_{2} is
$1 \sqrt{2}$
2) $\frac{1}{\sqrt{2}}$
3) $2 \sqrt{2}$
4) $\frac{1}{2 \sqrt{2}}$
14. Mixing of two gases by diffusion is
1Reversible
2) Exothermic
3) Irreversible
4) Endothermic

www.sakshieducation.com

15. The pressure of saturated water vapour at $25^{\circ} \mathrm{C}$ is $24.8 \mathrm{~m} . \mathrm{m}$. At $100^{\circ} \mathrm{C}$ the pressure of saturated water vapour will be \qquad
192.2 m.m.
2) $31.6 \mathrm{~m} . \mathrm{m}$.
3) $760 \mathrm{~m} . \mathrm{m}$.
4) $316 \mathrm{~m} . \mathrm{m}$.
16. Among the following gaseous elements, which will have greater rate of diffusion? [$Z=$ atomic number]
1) $Z=7$
2) $Z=8$
3) $Z=9$
4) $Z=10$
17. Dalton's law of partial pressure is not applicable to
$1 \mathrm{CO}+\mathrm{CO}_{2}$
2) $\mathrm{CO}_{2}+\mathrm{Cl}_{2}$
3) $\mathrm{N}_{2}+\mathrm{H}_{2}$
4) $\mathrm{CO}+\mathrm{Cl}_{2}$
18. 180 ml of hydro carbon having the molecular weight 16 diffuses in $\mathbf{1 . 5}$ min. under similar conditions, the time taken by 120 ml of SO_{2} to diffuse is
1) 2 min
2) 1.5 min
3) 1 min 4) 1.75 min
19. According to Graham's law at a given temperature the ratio of rate of diffusion $\frac{r_{A}}{r_{B}}$ of gases A and B is given by
20. $\left(\frac{P_{A}}{P_{B}}\right)\left(\frac{M_{A}}{M_{B}}\right)^{1 / 2}$
2) $\left(\frac{P_{A} \times M_{B}}{P_{B} \times M_{B}}\right)^{1 / 2}$
3) $\left(\frac{P_{A}}{P_{B}}\right)\left(\frac{M_{B}}{M_{A}}\right)^{1 / 2}$
4) $\left(\frac{M_{A}}{M_{B}}\right)\left(\frac{P_{B}}{P_{A}}\right)^{1 / 2}$
20. Which one of the following gas has highest diffusion rate?
1) Fluorine (at. $\mathrm{Wt}=19)$
2) Neon (at. Wt = 20)
3) Chlorine (at. $\mathrm{Wt}=35.5$)
4) Oxygen (at. $\mathrm{Wt}=16$)
21. Helium diffuses twice as fast as another gas B. The gas B may be
1) Oxygen
2) Methane
3) Neon
4) SO_{2}
22. Which is lighter than dry air?
1) Moist air
2) SO_{2}
3) Cl_{2}
4) N_{2}
23. A gaseous mixture contains 56 g of $\mathrm{N}_{2}, 44 \mathrm{~g}$ of CO_{2} and 16 g of CH_{4}. If the total pressure of the mixture is $\mathbf{7 2 0} \mathbf{~ m m}$ of $\mathbf{H g}$ then the partial pressure of CH_{4} is
1) 180 mm
2) 360 mm
3) 540 mm
4) 720 mm
24. 0.5 gm of H_{2} gas diffused through a porous pot in 10 minutes. Under the same conditions how many grams of oxygen will diffuse through the same pot?
1) 0.125 gm
2) 1 gm
3) 2 gm
4) 4 gm
25. The ratio of rates of diffusion of $\mathrm{SO}_{2}, \mathrm{O}_{2}$ and CH_{4} is
$1.1: \sqrt{2}: 2$
2) $1: 2: 4$
3) $2: \sqrt{2}: 1$
4) $1: 2: \sqrt{2}$
5) 50 ml of gas ' A ' diffuses through a membrane in the same times as 40 ml of a gas ' B ' under identical pressure temperature conditions. If the molecular weight of ' A ' is 64 , then molecular weight of ' B ' would be
1)100
6) 250
7) 200
8) 80
27. $\perp \mathrm{xml}$ of H_{2} gas effuses through a hole in a container in 5 seconds. The time taken for the effusion of the same volume of the gas specified below under identical conditions
1) 10 seconds, He
2) 20 seconds, O_{2}
3) 25 seconds, CO
4) 55 seconds, CO_{2}
28. Equal weights of two gases of molecular weight 4 and 40 are mixed. The pressure of the mixture is $1.1 \mathbf{~ a t m}$. The partial pressure of the lighter gas is this mixture is
1) 0.55 atm
2) 0.11 atm
3) 1 atm
4) 0.11 atm
29. 2lit of SO_{2} gas at $\mathbf{7 6 0} \mathbf{~ m m}$ of $\mathbf{H g}$ transferred to 10 lit flask containing oxygen at a particular temperature. The partial pressure of SO_{2} in the flask is
1) 63.33 mm of Hg
2) 152 mm of Hg
3) 760 mm of Hg
4) 1330 mm of Hg
30. 2 gm of Helium diffuses from a porous membrane in $\mathbf{4}$ minutes. How many grams of CH_{4} would diffuse through the same membrane in same time under similar conditions
1) 8 gm
2) 4 gm
3) 16 gm
4) 2 gm
31. At what temperature will the rate of diffusion of N_{2} be 1.6 times the rate of diffusion of SO_{2} at $27^{\circ} \mathrm{C}$?
1) $336^{\circ} \mathrm{C}$
2) $27^{\circ} \mathrm{C}$
3) $63^{\circ} \mathrm{C}$
4) $50^{\circ} \mathrm{C}$

Hint: ${ }^{\frac{r_{1}}{r_{2}}}=\sqrt{\frac{T_{1}}{\mathrm{M}_{1}} \times \frac{\mathrm{M}_{2}}{\mathrm{~T}_{2}}}$
32. In a gaseous mixture at 5 atmospheric pressure, $\mathbf{3 0 \%}$ of molecules of CO_{2}, 40% of molecules of N_{2} and the rest oxygen. The partial pressure of oxygen in the mixture is
1)11.5 atmosphere
2) 2 atmosphere
3) 1.4 atmosphere
4) 1.6 atmosphere
33. Equal volumes of two jars contain Ammonia and Hydrochloric gases respectively at constant temperature and pressure P. when one of the jars is inverted over another jar so that they mix up, the pressure in either of the jars is

1) Equal to P
2) $P+P=2 P$
3) $P / 2$
4) Becomes Zero

Hint: Both combine to form solid Ammonium chloride
34. The pair of gases which possess same rate of diffusion

1) $\mathrm{CO}_{2}, \mathrm{~N}_{2}$
2) $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{~N}_{2}$
3) $\mathrm{CH}_{4}, \mathrm{O}_{2}$
4) $\mathrm{CO}, \mathrm{N}_{2}$
35. Dalton's law of partial pressures is applicable to a mixture of
1) $\mathrm{NH}_{3}+\mathrm{HCl}$
2) $\mathrm{CH}_{4}+\mathrm{F}_{2}$
3) $\mathrm{CO}+\mathrm{Cl}_{2}$
4) $\mathrm{CO}_{2}+\mathrm{N}_{2}$
36. Equal weights of CH_{4} and O_{2} are present in a vessel. So their partial pressures are in the ratio
1) $2: 1$
2) $1: 2$
3) $2: 3$
4) $3: 1$

Hint: $\mathrm{P} 1: \mathrm{P} 2=\mathrm{n} 1: \mathrm{n} 2$
37. Which of the following is not an application of Graham's law?

1) Separation of isotopes of Uranium
2) Working of marsh gas alarm
3) Steam distillation
4) Separation of a gaseous mixture
38. Which among the following is true?
1) CO_{2} diffuses 1.5 times faster than SO_{2}
2) CH_{4} diffuses 2 times faster than O_{2}
3) He diffuses 2 times faster than CH_{4}
4) H_{2} diffuses 2 times faster than He
39. Atmolysis is based upon
1) Dalton's law
2) Charles's law
3) Graham's law
4) Boyle's law
40. Dry NH_{3} and HCl gas are introduced from either side of glass tube of length 100 cm . The white fumes are formed nearly at _ length from NH_{3} end
1) 40 cm
2) 50 cm
3) 60 cm
4) 80 cm
41. Molecular weights of 2 gases are in the ratio 36: 49. Then the ratio of diffusion of their rates will be
1) $6: 7$
2) $7: 6$
3) $18: 24.5$
4) $24.5: 18$
42. A vessel contains oxygen and hydrogen in the molecular ratio of $2: 1$ at a pressure of 30 atm . If a small leak is developed in the vessel, the composition of the gas mixture that effuses out initially $\left(\mathrm{O}_{2}: \mathrm{H}_{2}\right)$
1) $1: 4$
2) 2: 1
3) $1: 2$
4) $3: 1$
43. If $\mathbf{2 0} \mathbf{~ m l}$ of SO_{2} diffuses in $\mathbf{2 5} \mathrm{sec}$ under certain conditions the volume of He that will be diffused in same time under same conditions is
1) 160 ml
2) 100 ml
3) 80 ml
4) 40 ml

| | KEY | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 102 | $2) \mathbf{1}$ | $3) \mathbf{1}$ | $4) \mathbf{1}$ | $5) \mathbf{2}$ | $6) \mathbf{2}$ | $7) \mathbf{3}$ | $8) \mathbf{2}$ | $9) \mathbf{3}$ | $10) \mathbf{1}$ |
| $11) \mathbf{3}$ | $12) \mathbf{2}$ | $13) \mathbf{3}$ | $14) \mathbf{3}$ | $15) \mathbf{3}$ | $16) \mathbf{4}$ | $17) \mathbf{4}$ | $18) \mathbf{1}$ | $19) \mathbf{3}$ | $20) \mathbf{2}$ |
| $21) \mathbf{2}$ | $22) \mathbf{4}$ | $23) \mathbf{1}$ | $24) \mathbf{3}$ | $25) \mathbf{1}$ | $26) \mathbf{1}$ | $27) \mathbf{2}$ | $28) \mathbf{3}$ | $29) \mathbf{2}$ | $30) \mathbf{2}$ |

