Valency, Oxidation State and Diagonal

Relationship

In the first four groups of periodic table, the group number represents							
the							
1) Valency		2) Oxidation State					
3) Atomic number		4) Metallic Nature					
Which among the following has stable +2 oxidation state?							
1) Mg	2) Zn	3) Pb	4) All				
Metal exhibiting hig	hest oxidation state b	elongs to					
1) p-block	2) f-block	3) s-block	4) d-block				
Among the following outermost configuration of metals, the highest							
oxidation state achieved by							
1) $3d^3 4s^2$	2) 3d ⁵ 4s ¹	3) 3d ⁵ 4s ²	4) 3d ⁶ 4s ²				
The common oxidat	ion states of transition	n and inner tran	sition elements				
are respectively							
1) +2, +2	2) +3, +2	3) +2, +3	4) +3,+3				
Diagonal relationship is quite pronounced in the elements of							
1) 2 nd and 3 rd period	ls	2) 1 st and 2 nd groups					
3) II and III groups 4) 1 st			periods				
The pair of elements that have similar chemical properties are							
1) Lithium and Magnesium2) Beryllium and Boron							
3) Aluminium and M	agnesium	4) Carbon and	Nitrogen				
	In the first four grow the 1) Valency 3) Atomic number Which among the fol- 1) Mg Metal exhibiting hig 1) p-block Among the followin oxidation state achie 1) $3d^3 4s^2$ The common oxidat are respectively 1) $+2$, $+2$ Diagonal relationsh 1) 2^{nd} and 3^{rd} period 3) II and III groups The pair of element 1) Lithium and Magri	In the first four groups of periodic table, of the 1) Valency 3) Atomic number Which among the following has stable +2 1) Mg 2) Zn Metal exhibiting highest oxidation state by 1) p-block 2) f-block Among the following outermost configuration oxidation state achieved by 1) $3d^3 4s^2$ 2) $3d^5 4s^1$ The common oxidation states of transition are respectively 1) +2, +2 2) +3, +2 Diagonal relationship is quite pronounced 1) 2^{nd} and 3^{rd} periods 3) II and III groups The pair of elements that have similar ch 1) Lithium and Magnesium 3) Aluminium and Magnesium	In the first four groups of periodic table, the group number the 1) Valency 2) Oxidation State 3) Atomic number 4) Metallic Nate Which among the following has stable +2 oxidation state? 1) Mg 2) Zn 3) Pb Metal exhibiting higgers to oxidation state borgs to 1) p-block 2) f-block 3) s-block Among the following outermost configuration of metals, the oxidation state achieved by 1) $3d^3 4s^2$ 2) $3d^5 4s^1$ 3) $3d^5 4s^2$ The common oxidation states of transition and inner transform are respectively 1) ± 2 , ± 2 2) ± 3 , ± 2 3) ± 2 , ± 3 Diagonal relationship is quite pronounced in the elements 1) $2n^d$ and $3r^d$ periods 2) t^{3t} and $2n^d$ g 3) If and III groups 4) t^{st} and $2n^d$ g 3) Aluminium and Magnesium 2) Beryllium an 3) Aluminium and Magnesium 4) Carbon and				

8.	Diagonal relations	hip is shown by						
	1) B - S	2) Li - Mg	3) Mg - Ca	4) S - Cl				
9.	Which of the following pairs of elements are not diagonally related?							
	1) Lithium and Mag	gnesium	2) Oxygen and Sulphur					
	3) Beryllium and A	luminium	4) Boron and S	Silicon				
10.	Diagonal relations	hip of Boron and	d Silicon is due to the	equal value of				
	their							
	1) Electron affinity		2) Atomic Vo	olume				
	3) Ions polarizing p	ower	4) All of thes	e				
11.	An element with e	lectronic arrang	ement as 2, 8, 14, 2 w	ill exhibit the				
	following stable ox	idation states						
	1) +2 and +4	2) +2 to +3	3) +1 only	4) +1 and +2				
12.	Two elements A an	nd B having the	electronic					
	configurations $A = 1s^2 2s^2 2p^6 3s^2 3p^1$. The formula of the compound							
	formed between them can be							
	1) AB	2) A_2B_3	3) <i>AB</i> ₂	4) A_3B_2				
13	Fixed oxidation sta	ate is not exhibit	ed by					
	1) Aluminium	2) Fluorine	3) Sodium	4) Copper				
14.	A metal forms a cl	nloride with the	formula MCl ₂ .Formu	ıla of Phosphoric				
	acid is H_3PO_4 . For	mula of the Phos	sphate of the metal is					
	1) $M_2 PO_4$	2) <i>MPO</i> ₄	3) $M_2(PO_4)_2$	4) $M_2 PO_4$				
15	Beryllium shows d	iagonal relation	shin with aluminium	Which of the				
13.	following similarit	v is incorroct?		which of the				
•	1) Roo C liko Al C	y is incorrect.	on hydrolygig					
	1) Be_2C like Ai_4C_2	g yields methane (on nyurorysis					
	2) Be, like Al is ren	derd passive by H	INO ₃					
	3) Be (OH) $_2$ like A	d (OH) 3 is basic						

4) Be forms beryllates and Al forms aluminates

16. Which of the following statements are wrong?

I) Bi^{3+} is more stable than Bi^{5+} .

II) Mn shows + 8 oxidation state.

III) The oxidation state of an element is always less than or equal to its group number.

IV) s-block elements show variable oxidation states.

The answer is

1) II and IV 2) II and III 3) I, II and III 4) II, III and IV

17 An element forms oxide of the type its bromide can be represented by

1) MBr_2 2) MBr_4 3) MBr_3 4) M_5Br_4

- 18. Beryllium resembles Aluminium in properties. This is mainly due to
 - 1) Equal electro negativity values of elements
 - 2) Equal atomic volumes of the elements
 - 3) Equal number valence electrons
 - 4) Equal nuclear charges in their atoms
- 19. Match the following two lists given below in view of highest oxidation

state	
List - 1	List - 2
A) Mn	1) +5
B) Os	2) +6
C) P	3) +4
D) Cr	4) +8
	5) +7

The correct match is

	Α	B	С	D		Α	B	С	D
1).	5	4	1	2	2).	5	1	4	2
3).	4	3	2	1	4).	3	1	4	2

20. (A): Be and Al has similar properties.

(R): Cations of Be and Al have same polarizing power.

The correct answer is

- 1. Both (A) and (R) are true and (R) is the correct explanation of (A).
- 2. Both (A) and (R) are true and (R) is not the correct explanation of (A)

NCE

- 3. (A) is true but (R) is false.
- 4. (A) is false but (R) is true.

.21. Match the following in view of diagonal relation

List - 2
1) Al
2) C

- C) Be
- 4) Mg

3) B

The correct match is

	Α	B	С		Α	B	С
1.	1	3	4	2.	3	1	4
3.	4	1	3	4.	4	3	1

22. The formula of the compound formed by the pair of elements Al & S is:

```
1) Al_2S_3 2) Al_3S_2 3) Al_4S_3 4) AlS_3
```

23. Among the following the number of elements showing only one non-zero oxidation state is O, Cl, F, Na, Al and Mg.

 1) 1
 2) 3
 3) 2
 4) 4

KEY

