www.sakshieducation.com Transpiration

1.	Maximum transpi	()					
	1) Stomata	2) Cuticle	-	3) Lenticels	4) Cut	icle &	& Lenti	cels
2.	Scotoactive stomat	ta					()
	1) Opens during day	y time		2) Opens du	uring nig	ht tin	ne	
	3) Opens during Da	ıy & Night		4) Never op	ens			\frown
3.	Dumbbell shaped			()			
	1) All monocots	2) Lil	liaceae	3) Graminaceae		4) D	icotyle	dons
4.	Source of protons			()			
	1) Water	2) Sugars	3) Ligh	t	4) Ma	late		
5.	During opening of	stomata, int	o the gua	ard cells	\mathbf{O}		()
	I: Entry of K+ is ac	tive	II: Entr	y of Cl is active				
	III: Export of H+ is	active	IV: Ent	ry of H_2O is active	e			
	Correct statements	are						
	1) I & II	2) II & III	3) I & I	III 4) I & IV				
6.	Transpiration can	be demonstr	ated by				()
	1) Ganong's potom	eter	2) Bell	jar experiment				
	3) Hydrilla experim	nent	4) Baro	ometer				
7.	The factors that sh	now inversely	v proport	tional relationshij	p with tr	ansp	oiration	l
							()
	1) Temperature & H	Humidity						
	2) Availability of w	vater & Very h	nigh velo	city of wind				
	3) Light & Tempera	ature						
	4) Humidity & Ver	y high velocit	y of wind	1				
8.	Assertion (A): Spin	nous plants t	ranspire	less		()	
	Reason(R) : Spin	es are adopti	ons of xe	erophytic plants				
	1) Both A and R are	e true and R is	s the corr	ect explanation of	A.			
	2) Both A and R are	e true but R is	not the c	correct explanation	n of A.			
	3) A is true, R is fal	lse	4) A is	false, R is true				
9.	Natural anti transpi	rant in plants	is				()
	1) Auxin	2) Ma		4) A	BA			

10.	Transpiration pla	()								
	1) Uptake & Trans	port of minerals	2) Absorption of water								
	3) Translocation of	solutes	4) Distribution of water								
11.	Transpiration is a	()								
	1) Slatyer	2) Arnon	3) Knop	4) Curtis							
12.	Phenyl mercuric a	acetate (PMA) is		(
	1) An antibiotic use										
	2) A fungicide used										
	3) A fungicide used	l as an antitranspir	ant	6							
	4) A growth hormo	one used as an anti	transpirant.	+							
13.	Stomatal Index is		• 0	• ()						
	1) Ratio between st	comata and leaf sur	face area								
	2) Ratio between st	omata per unit are	a and sum of epidermal cells a	and stomata o	of that						
	unit are										
	3) Ratio between epidermal cells and stomata of that unit area										
	4) Ratio between sum of stomata and epidermal cells of a unit area and stomata of that										
	area.	•	6								
14.	Ascent of sap is m	()								
	1) Soil into Xylem										
	3) Xylem into atmo	osphere 4)	Leaves into atmosphere								
15.	Guttation is	0		()						
	1. Evidence of root	pressure.									
	2. Movement of wa	ter through the ap	oplast.								
	3. Movement of so	luble organic mate	rials through plants								
	4. Negative pressur	e created by transp	piration.								
16.	When water poter	itial of accessory	cells increase	()						
	1) Stomata open										
	3) Stomata either o	opens nor clo	oses								
17.	True statement re	garding opening (of stomata	()						
	1) Wind is essentia	1	2) Water potential gradier	nt is essential							
	3) Light is essential. 4) Protons are essential.										

18.	True statement regardin	()										
	I: High wind velocity incr												
	II: As available water is pure rate of transpiration is maximum.												
	III: Atmospheric pressure increases transpiration.												
	IV: Light increases transpiration to certain extent												
	1) I & II	2) II & III	4) IV &	II									
19.	Apparently the source of	f energy for k	n is)									
	1. Ion transfer	2.Tra	anspiration	C C									
	3. Photosynthesis	4.Hy	drogen bond formation	on 🔶 🔸									
			+. (
20.	Transpiration rate is inv	ersely propo	rtional to	()								
	1) Temperature	2) Light	3) Gentle breeze	4) High wind s	peeds								
21.	Stomatal opening and cl	osing depend	s on	()								
	1) pH changes		2) Guard cel	l size									
	3) Size of stomatal chamb	er	4) Solute co	ncentration of gu	ard cells								
22.	During stomatal closing	· · · (C		()								
	1) Protons move actively	into guard cel	ls 2) Protons moves	passively into gu	lard cells.								
	3) Chloride moves passive	ely into guard	cells. 4) Malate m	oves to adjacent	cells.								
23.	The reason that a colum	n of water in	a tall tree does not s	sink because of i	its weight								
	is			()								
	1. The tensile strength of a	a column of w	vater.										
	2. Bubbles form that are to	oo large to be	transported										
	3. The presence of strong	ion concentra	tions near the top of t	he tree									
	4. The formation of hydro	gen bonds wit	th the plants vessels										
24.	Stomata open during day	y and closes o	during night are call	ed as ()								
	1) Photoactive	2) Scotoacti	ve										
	3) Amphiactive	4) Hypoacti	ve										
25.	Rate of the transpiration	n from the up	per surface and low	er surface of the	e								
	leaf can be known by			()								
	1. Bell jar experiment		2) Cobalt ch	loride experimer	nt								
	3. Ganong's potometer		4.Ganong's	sunscreen									
	www.sakshieducation.com												

26.	Cohesion - Tensio	()										
	I: Decrease in wate												
	II: Transpiration pull												
	III: Water potential gradient between soil solution and xylem												
	IV: Unbroken wate	r column											
	1) I & II	2) II & III	3) III & IV	4) II & IV									
27.	SPAC is												
	1. An expression of	rroundings											
	2. An expression of	f relationship betwee	n stomatal pore and	l adjacent cells									
	3. Stomatal Index			\sim									
	4. Surface pore area	a	٠.	0									
28.	Lenticels are pres	ent on	X	()								
	1. Bark of woody s	tems and on leaf	2. Roots an	nd flowers									
	3. On woody stems	and fruits	4. Young b	oranches									
29.	In dumbbell shap	ed stomata thickeni	ngs are on	()								
	1. Only inner walls	walls											
	3. At both ends		4.Inner and outer	walls in the middle									
30.	Bryophyllum trans	spires during		()								
	1. Day	2. Night	3. Day and night	4. Never th	ranspires								
31.	K ⁺ pump hypothe	sis is proposed by		()								
	1. Levitt	2. Stadler	3. Slatyer	4. Bowling	2								
32.	Outward moveme	nt of H^+ are exchan	ged with	()								
	1. Na ⁺	2. K ⁺	3. Cl	4. Malate ion									
33.	True statement fr	om the following		()								
	1. Excess K ⁺ enters	into guard cells than	$h H^+$ efflux 2. Malat	te move outside guar	d cells								
	3. Chloride balance	es only K ⁺	4. Chlor	ide balances only ma	alate								
34.	During turgid con	dition of the guard	cells	()								
	1. Outer wall become	all becomes convex											
	3. Outer wall becom	nes concave	4. Both the	e walls becomes conv	vex								
36.	Membrane perme	()										
	1. CO ₂	2. ABA	3. K	4. 0	21-								
35.	According to cohe	sion - tension theor	y efficient structur	res in conducting wa	ater.								
	1) Vessels	4) Inter cellular s	paces.										

37.	7. On a unit area of a leaf stomata are 20 and epidermal cells are 80.Stamatal Index																		
	i	is										()					
	1	. 0.8				2.1.	25			3.	8			2	4. 0.2	2			
38.	V	When root/ shoot ratio increases rate of transpiration									()						
	1	. Dec	ereas	es				2. Increases											
	3	3. Either increases or decreases 4. Neither increases nor decrea									ises								
39.	. The upward movement of water against gravitation force in plants is)						
																	5		
	1	1) Capillary rise 2) Translocation 3) Absorption (4) A												Asce	nt of	sap			
40.	A	sser	tion:	Em	bolis	m st	ops 1	rans	pira	tion			٠	C					
	Reason (R): Embolism stops the movement of water in xylem vessels																		
	1) Bot	th A	and I	R are	true	and	R is	the c	orrec	et exp	olana	tion	of A.					
	2) Bot	th A	and I	R are	true	but l	R is 1	not th	ne co	rrect	expl	anati	on of	fA.				
	3) A i	s true	e, R i	s fals	se				~									
	4	4) A is false, R is true																	
								•	2	5									
								0											
							C		Tra	ans	pira	atio	n-k	Key					
						N								•					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	2	3	4	3		4	2	4	3	4	3	2	2	15	10	2	3	1	4
1 21	22	23	24	25	26	27	2 28	29	30	31	32	2 33	2 34	1 35	1 36	2 37	38	1 39	40
4	1	1	24 1	23	4	1	20 3	29 4	2	1	2 32	55 1	54 1	2	2	37 1	2	39 4	40 4
4				2	4	1	3	4	4	1	4	1	1	4	4	1	4	4	4