Thermodynamics

1. Hot Milk in a thermos flask is an example for
1) Isolated system
2) Open system
3) Closed system
4) Adiabatic system
2. In open system, system and surroundings exchange
1) Energy only
2) Matter only
3) Both $1 \& 2$
4) Neither 1 nor 2
3. Which of the following is a state function?
1) Intrinsic energy
2) Enthalpy
3) Heat
4) Both $1 \& 2$
4. The standard heat of combustion of graphite carbon is $-393.5 \mathrm{KJ} \mathrm{mol}^{-1}$. The standard enthalpy of CO_{2} is
1) $+393.5 \mathrm{KJ} \mathrm{mol}^{-1}$
2) $-393.5 \mathrm{KJ} \mathrm{mol}^{-1}$
3) $\left.+196.75 \mathrm{KJ} \mathrm{mol}^{-1} 4\right)-196.75 \mathrm{KJ} \mathrm{mol}^{-1}$
5. Which of the following is a path function?
1) Internal energy
2) Enthalpy
3) Work
4) Entropy
6. Mathematical representation of 1 st law of Thermodynamics is
1) $Q=E+W$
2) $H=E+P V$
3) $W=Q \times E$
4)) $\Delta H=\Delta E+v \Delta P$
7. Which of the following values of heat of formation indicates that the product is least stable?
1) -393.5 KJ
2) -972.7 KJ
3) +89.9 Kj
4) +272.2 KJ

Hint: Endothermic compound is less stable. More endothermic is least stable.
8. Enthalpy change in a cyclic process is

1) Infinite
2) Can't be predicted
3) Unity
4) Zero
9. According to 1st law of Thermodynamics
1) Energy can be created but not destroyed
2) Energy cannot be created but can be destroyed
3) Energy can be created and destroyed
4) Energy neither be created nor destroyed
10. Internal energy does not include
1) Vibrational energy
2) Rotational Energy
3) Energy due to gravitational pull
4) Potential Energy
11. At a given temperature internal energy of 4.4 gm dry ice is
1) Same as 4.4 gm liquid CO_{2}
2) Same as $4.4 \mathrm{gm} \mathrm{CO}_{2}$ gas
3) Same as 8.8 gm dry ice
4) Same as 0.1 moles of dry ice
12. The change in internal energy of a system depends on
1) Initial and final states of the system
2) The Path if reversible
3) The path if irreversible
4) Initial, final states and also on the path
13. Enthalpy change during a reaction does not depend upon
1) Conditions of a reaction
2) Initial and final concentration
3) Physical states of reactants and products
4) Number of steps in the reaction
14. The standard enthalpies of n-pentane, isopentane and neopentane are $\mathbf{- 3 5 . 0}$, 37.0 and $\mathbf{- 4 0 . 0} \mathbf{K . c a l} /$ mole respectively. The most stable isomer of pentane in terms of energy is
1) n-pentane
2) Isopentane
3) Neopentane
4) Both $1 \& 2$
15. The enthalpies of the elements in their standard states are arbitrarily assumed to be
1) Zero at 298 K and 1 atm
2) Unity at 298 K and 1 atm
3) Zero at all temperatures
4) Zero at 273 K and 1 atm
16. The standard enthalpy is zero for the substance
1) C (graphite)
2) C (diamond)
3) CO_{2} (gas)
4) All
17. The heat required to raise the temperature of a body by $\mathbf{1}^{\mathbf{0}} \mathrm{C}$ is called
1) Specific heat
2) Heat capacity
3) Water equivalent
4) Heat energy
18. In exothermic reaction
1) $\mathrm{H}_{\mathrm{R}}=\mathrm{H}_{P}$
2) $\mathrm{H}_{\mathrm{R}}>\mathrm{HP}_{P}$
3) $\mathrm{H}_{\mathrm{R}}<\mathrm{HP}_{P}$
4) $\Delta \mathrm{H}=0$
19. The incorrect IUPAC convention
1) Heat gained by system + ve sign
2) Work done by system - ve sign
3) Work done on the system + ve sign
4) Work done on the system - ve sign
20. Which of the following is an endothermic reaction?
1) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
2) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{NO}$
3) $3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$
4) $\mathrm{PCl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{PCl}_{5}$

21 change in enthalpy and change in internal energy are equal at room temperature for

1) Combustion of glucose
2) Combustion of ethylene
3) Combustion of methane
4) Combustion of ethyl alcohol
22. The difference between heats of reaction at constant pressure and at constant volume for the reaction

$$
2 \mathrm{C}_{6} \mathrm{H}_{6(l)}+15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \text { at } 25^{0} \mathrm{C} \text { in } \mathrm{KJ} \text { is }
$$

1) -7.43
2) +3.72
3) -3.72
4) +7.43

Hint: $\Delta \mathrm{H}=\Delta \mathrm{E}+\Delta \mathrm{n}$ RT
$\Delta \mathrm{H}-\Delta \mathrm{E}=(-3) \mathrm{X} 8.314 \mathrm{X} 10^{-3} \mathrm{X} 298=-7.43 \mathrm{Kj}$
23. For which of the following reactions $\Delta \mathrm{H}=\Delta \mathrm{E}-2 \mathrm{RT}$

1) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
2) $\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{(\mathrm{g})}$
3) $\mathrm{NH}_{4} \mathrm{HS}_{(\mathrm{s})} \rightarrow \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$
4) $\mathrm{PCl}_{5(\mathrm{~g})} \rightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$

Hint: $\Delta \mathrm{H}=\Delta \mathrm{E}+\Delta \mathrm{n}$ RT
Given $\Delta H=\Delta E-2 R T$ i.e. $\Delta n=-2$
24. For which of these process is the value of ΔH negative
i) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$
ii) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \xrightarrow{\mathrm{Fe}+\mathrm{Mo}} 2 \mathrm{NH}_{3}$
iii) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \xrightarrow{\mathrm{~V}_{2} \mathrm{O}_{5}} 2 \mathrm{SO}_{3}$
iv) $\mathrm{H}_{2}+\mathrm{I}_{2} \xrightarrow{\mathrm{pf}} 2 \mathrm{HI}$

1. i and ii are correct
2. ii and iii are correct
3. iii and iv are correct
4. i and iv are correct

25. Heat of neutralization is least when

1) NaOH is neutralised by $\mathrm{CH}_{3} \mathrm{COOH}$
2) $\mathrm{NH}_{4} \mathrm{OH}$ is neutralised by $\mathrm{CH}_{3} \mathrm{COOH}$
3) NaOH is neutralised by HCl
4) $\mathrm{NH}_{4} \mathrm{OH}$ is neutralised by HNO_{3}
26. For the reaction $\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+\mathbf{2} \mathrm{H}_{2} \mathrm{O}$ (g), the difference between enthalpy change and internal energy change is
1) -RT
2) +RT
3) $-2 R T$
4) Zero

Hint: $\Delta \mathrm{H}=\Delta \mathrm{E}+\Delta \mathrm{n}$ RT
27. The following is not a combustion reaction

1) $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
2) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
$3^{\mathrm{C}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}}$
3) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
28. Match the following.

List -I

A) $\Delta H<0$
B) $\Delta H=\Delta E+\Delta n R T$
C) Bomb-calorimeter
D) Hess law is based on

List-II

1) First law of thermodynamics
2) Heat of combustion
3) Relationship between Q_{p} and Q_{v}
4) Exothermic reaction

Correct match

A
C
D

1. 1

2
3
4
2. 4

3
2
3. 43

1
2
4. 31
$4-2$
29. $2 \mathrm{H}_{2(g)}+2 \mathrm{Cl}_{2(g)} \rightarrow 4 \mathrm{HCl}(g), \Delta H^{0}=-92.3 \mathrm{~kJ}$
i) If the equation is reversed, the value $\Delta \mathrm{H}^{0}$ equal to +92.3 Kj
ii) The four $\mathrm{H}-\mathrm{Cl}$ bonds are stronger than the four bonds in $2 \mathrm{H}_{2}$ and $2 \mathrm{Cl}_{2}$
iii) The $\Delta \mathrm{H}^{0}$ value will be -92.3 Kj if the HCl is produced as a liquid

1. All are correct
2. i Only correct 3. i and ii are correct
3. iii Only correct
4. The correct statement among the following
i) Heat of reaction depends on the temperature at which the reaction is carried
ii) $\Delta \mathrm{H}$ for neutralization is always -Ve .
iii) Experimentally heat of combustion is $\Delta \mathrm{E}$.
5. i only correct
6. ii only correct
7. iii only correct
8. All are correct
9. Match the following.
List-I
List - II
A)solid \rightarrow vapour
1) 32.8
B) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$
2) -22

$$
\Delta H=-44 \text { K.cals }
$$

heat of formation HCl (k.cal)
C) Heat of combustion of
3) 1 calories

Graphite is-393.5 k.J its
Calorific value of (in k.J)
D) 4.184 Joules is equal to
4) Endothermic

Correct match is

A
C
D

1. 1 2 3

4
2. 43

2
3. 4

2
1
4. 21

4
1

3
32. Match the following.
A) $\mathrm{HNO}_{3}+\mathrm{KOH} \quad$ i) 55.2 kJ per mol
B) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{KOH}$
ii) Path function
C) Internal Energy
iii) 57.3 kJ per mol
D) Work done
iv) State function

1) A-(iii), B-(i),
C(iv), $\quad \mathrm{D}$ (ii)
2) A-(i), B-(ii), $\quad \mathrm{C}(\mathrm{iii}), \quad \mathrm{D}$ (iv)
3) A-(ii), B-(i), $\quad \mathrm{C}(\mathrm{ii}), \quad \mathrm{D}(\mathrm{iv})$
33. Assertion (A): The enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}_{(l)}$ is greater than that of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

Reason (R): Enthalpy change is negative for the condensation reaction $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}$

1. Both assertion and reason are correct, reason is the correct explanation of the assertion.
2. Both assertion and reason are correct reason is the not correct explanation of the assertion.
3. A is correct, R is incorrect.
4. Both A and R are incorrect.
5. Match the following.

List-I

A) Heat of Hydration
B) Heat of Transition

1) Is an Intensive property
C) Molar volume of a gas
D) Volume of a gas
2) Is an Extensive property
3) $\Delta \mathrm{H}$ is always -Ve
4) $\Delta \mathrm{H}$ may be +Ve or -Ve

List - II

The correct match is

	\mathbf{A}	\mathbf{B}	\mathbf{C}
1) 1	2	3	\mathbf{D}
2) 4	3	1	2
3) 3	4	1	2
4) 2	1	4	3

35. A gas contained a cylinder fitted with a friction less piston expands against a constant pressure 1atm from a volume of 2 liter to volume of 12 liter. In doing so, it absorbs 800 J thermal energy from surrounding. Then the $\Delta E f o r$ the process is
1) - 213.7 J
2) - 112 J
3) - 50 J
4) - 25 J

Solution: $W=-P \times \Delta V=-1 \mathrm{X}(12-2)=-10 \mathrm{lit} . \mathrm{atm}=-10 \mathrm{X} 101.37 \mathrm{kj}=-1013.7 \mathrm{kj}$

$$
\Delta E=q-w=800-1013.7=-213.7 \mathrm{Kj}
$$

36. 5moles of oxygen are heated at constant volume from $10^{\boldsymbol{0}}$ to $20^{\boldsymbol{0}} \mathrm{C}$. The change in internal energy of a gas is?
$\left[C_{P}=7.03 \mathrm{calmol}^{-1} \mathrm{des}^{-1}\right.$ and $\left.R=8.31 \mathrm{Jmol}^{-1} \mathrm{des}^{-1}\right]$
1) 125 cal
2) 252 cal
3) 50 cal
4) 500 cal

Solution:

$$
C_{P}-C_{V}=R \quad C_{V}=7.03-1.99=5.04
$$

Heat absorbed by 5mole of oxygen in heating from 10 to 20^{0} $=5 \times C r \times \Delta T=5 \times 5.04 \times 10=252 \mathrm{cal}$.

Since the gas is heated at constant volume, no external work is done $\mathrm{W}=0$. So change in internal energy will be equal to heat absorbed.

$$
\Delta E=q+W=252+0=252 \mathrm{cal}
$$

37. The amount of work done by 2 mole of an ideal gas at 298 K in reversible isothermal expansion from $10 l i t r e$ to $20 l i t r e$ is
1) -120 J
2) - 2452 J
3) -3434.9 J
4) 2200 J

Solution:

$$
\begin{aligned}
& W=-2.303 n R T \log \frac{V_{2}}{V_{1}} \\
& =-2.303 \mathrm{X} 2 \mathrm{X} 8.314 \mathrm{X} 298 \mathrm{X} \log (20 / 10)=-3434.9 \mathrm{j}
\end{aligned}
$$

38. 5moles of an ideal gas at $27^{\circ} \mathrm{C}$ expands isothermally and reversibly from a volume of 1 L to 10 L . The work done in KJ is
1) -14.7
2) -28.72
$3)+28.72$
3) -56.72

Solution:

$$
\begin{aligned}
W & =-2.303 n R T \log \frac{V_{2}}{V_{1}} \\
& =-2.303 \mathrm{X} 5 \mathrm{X} 8.314 \times 10^{-3} \mathrm{X} 300 \mathrm{Xlog}(10 / 1)=-28.7 \mathrm{KJ}
\end{aligned}
$$

39. 10litres of an ideal gas confined to a volume of 10 L is released into atmosphere at 300 K where the pressure is 1bar. The work done by the gas is ($R=0.083 \mathrm{Lbar}^{-1} \mathrm{~mol}^{-1}$)
1) 249 L bar
2) 259 L bar
3) 239 L bar
4) 220 L bar

Solution: ${ }^{V_{2}=\frac{n R T}{P}=249 L}, \quad W=P \Delta V=1 \times(249-10)=239 \mathrm{~L}$ bar
40. 1 mole of a gas is heated at constant pressure to raise its temperature by $\mathbf{1 0}^{\mathbf{0}} \mathrm{C}$. The work done in Joules is

1) -4.3
2) -8.314
3) -16.62
4) Unpredictable

Solution: $\mathrm{W}=-\mathrm{nR} \Delta \mathrm{T}=-1 \times 8.314 \times 1=-8.314 \mathrm{~J}$
41. 3.0 moles of ideal gas is heated at constant pressure from $47^{\circ} \mathrm{C}$ to $147^{\circ} \mathrm{C}$. Then the work expansion of gas is

1) - 2.494 KJ
2) +2.494 KJ
3) -10.5 KJ
4) +10.5 KJ

Solution: W=-nR ΔT

$$
=-3 \times 8.314 \times 10^{-3}(147-47)=-2.494 \mathrm{KJ}
$$

42. The $\mathbf{p K a}$ values of four acids $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are $9.14,9.92,2.86$ and 1.3 respectively. The heat of neutralization is more in the following reaction
1) $\mathrm{A}+\mathrm{NaOH} \rightarrow \ldots$.
2) $\mathrm{B}+\mathrm{NaOH} \rightarrow \ldots$
3) $\mathrm{D}+\mathrm{NaOH} \rightarrow \ldots$
4) $\mathrm{C}+\mathrm{NaOH} \rightarrow \ldots$

Solution: Lower $\mathrm{P}_{\mathrm{a}}^{\mathrm{k}}$ represents strong acid. The heat of neutralization is more for a strong acid.
43. The heats of neutralisation of acids $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D with $\mathbf{N a O H}$ are $\mathbf{- 1 3 . 5} \mathbf{K}$.cal, $\mathbf{1 2 . 7}$ K.cal, -11.8 K.cal, -12.4 K.cal respectively. The weakest acid is

1) A
2) B
3) C
4) D

Solution: If the heat of neutralisation is lowest then the acid is weakest.

1) 51.9 KJ
2) -51.9 KJ
3) -25.95 KJ
4) 25.95 KJ

Solution: heat of formation $=\Delta \mathrm{H}$ per mole $=(51.9 / 2)=25.95$
45. The heat of formation of $\mathbf{H}_{2} \mathrm{O}_{(1)}$ is $\mathbf{- 2 8 6 . 2} \mathbf{K J}$. The heat of formation of $\mathbf{H}_{2} \mathrm{O}_{(\mathrm{g})}$ is likely to be

1) -286.2 KJ
2) -290.78 KJ
3) -335.2 KJ
4) -242.76 KJ

Solution: $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ is an Endothermic process.
46. $\quad \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \quad \Delta H=16.3 \mathrm{KJ}$
ΔH in the above reaction represents

1) Heat of solution
2) Heat of hydration
3) Heat of dilution
4) Heat of ionization
47. A system absorbs 10 kJ of heat and does 4 kJ of work. The internal energy of the system would?
1) Decreases by 6 kJ
2) Increases by 6 kJ
3) Decreases by 14 kJ
4) Decreases by 14 kJ

Solution: $q=10 \mathrm{Kj}, \mathrm{W}=-4 \mathrm{Kj}$ thus $\Delta \mathrm{E}=\mathrm{q}+\mathrm{W}=10-4=6 \mathrm{Kj}$
48. When 4 grams of methane is completely burnt in oxygen, the heat evolved is $224 \mathbf{k J}$. What is the heat of combustion (in KJ) of methane?

1) -1120
2) -968
3) -896
4) -560

Solution: Heat of Combustion= heat liberated per 1 mole
if 4 gm of methane given 224 KJ then 1 mole i.e 16 gm of methane gives $(16 / 4) \times 224=896 \mathrm{KJ}$.
49. One mole of ideal gas expands freely at 310 K from five liter volume to $\mathbf{1 0}$ liter volume. Then $\Delta \mathbf{E}$ and $\Delta \mathbf{H}$ of the process are respectively

1) 0 and 5 cal
2) 0 and $5 \times 300 \mathrm{cal}$
3) 0 and 0
4) 5 and 0 cal

Hint: for an Ideal gas $\Delta \mathrm{H}=0$ and $\Delta \mathrm{E}=0$
50. The heat of dissociation (in K.cals/mole) of CH_{4} and $\mathrm{C}_{2} \mathbf{H}_{6}$ are 360 and 620 respectively. From these the $\mathbf{C}-\mathrm{C}$ bond energy in the ethane can be evaluated as

1) 260
2) 130
3) 80
4) 200

Solution:

Average energy of C-H bond in $\mathrm{CH}_{4}=(360 / 4)=90$
$\mathrm{C}_{2} \mathrm{H}_{6}$ has $6 \mathrm{C}-\mathrm{H}$ bonds and $1 \mathrm{C}-\mathrm{C}$ bond.
$6 \mathrm{C}-$ Hbonds $+1 \mathrm{C}-\mathrm{C}$ bond $=540$
Energy of C-C $=620-(6 \mathrm{C}-\mathrm{H})=620-6 \mathrm{X} 90=620-540=80 \mathrm{~K} . \mathrm{cal}$

KEY

$1) 1$	$2) 3$	$3) 4$	$4) 2$	$5) 3$	$6) 1$	$7) 4$	$8) 4$	$9) 4$	$10) 3$
$11) 4$	$12) 1$	$13) 4$	$14) 3$	$15) 1$	$16) 1$	$17) 1$	$18) 2$	$19) 4$	$20) 2$

$\begin{array}{llllllllll}21) 1 & 22) 1 & 23) 1 & 24) 2 & 25) 3 & 26) 4 & 27) 3 & 28) 2 & 29) 3 & 30) 4\end{array}$
$\begin{array}{llllllllll}31) 3 & 32) 1 & 33) 1 & 34) 2 & 35) 1 & 36) 2 & 37) 3 & 38) 2 & 39) 3 & 40) 2\end{array}$
$\begin{array}{lllllllllll}41) 1 & 42) 3 & 43) 3 & 44) 4 & 45) 4 & 46) 1 & 47) 2 & 48) 3 & 49) 3 & 50) 3\end{array}$

