www.sakshieducation.com

States of Matter

1. The approximate energy required to break ${ }^{+} \mathrm{AB}^{-}$type ionic crystal into its ions is in the range of
1) 10 to $100 \mathrm{~kJ} / \mathrm{mole}$
2) 50 to $150 \mathrm{~kJ} / \mathrm{mole}$
3) 500 to $1000 \mathrm{~kJ} / \mathrm{mole}$
4) 2 to $50 \mathrm{~kJ} / \mathrm{mole}$

2. Ion-dipole attractions are present in

1) Water
2) $\mathrm{NaCl}+$ Water
3) Benzene
4) All
3. In ion-dipole forces, the magnitude of the interaction energy (E)
1) $E=\frac{Z^{2} \mu}{r^{2}}$
2) $E=\frac{Z \mu}{r}$
3) $E=\frac{Z \mu^{2}}{r^{2}}$
4) $E=\frac{Z \mu}{r^{2}}$

4. The energy order of dipole-dipole forces is

1) 1 to $2 \mathrm{~kJ} / \mathrm{mole}$
2) 3 to $4 \mathrm{~kJ} / \mathrm{mole} 3) 10$ to $20 \mathrm{~kJ} / \mathrm{mole} 4$) 15 to $25 \mathrm{~kJ} / \mathrm{mole}$

5. Regarding dipole - dipole attractions the incorrect statement is

1) Dipole - dipole attractions are more, if the molecules have high dipole moment values.
2) In liquid HBr , dipole - dipole attractions are present.
3) Dipole - Dipole interaction energy between stationary polar molecules as in solids $\alpha{ }^{\frac{1}{r^{3}}}$
4) Dipole - dipole interaction energy between rotating molecules $\alpha \frac{1}{r^{3}}$.

www.sakshieducation.com

6. London forces arises

1) Due to instantaneous dipole on one atom of a molecule
2) Due to permanent dipole on one atom of a molecule
3) Due to the presence of charge on each ion of a molecule
4) None
7. The average energy of London forces is
1) 1 to $2 \mathrm{~kJ} / \mathrm{mole}$
2) 1 to $10 \mathrm{~kJ} / \mathrm{mole}$
3) 10 to $20 \mathrm{~kJ} / \mathrm{mole}$
4) 20 to $30 \mathrm{~kJ} /$ mole
8. F_{2} is gas but I_{2} is solid, because
1) Larger London forces are present in I_{2} when compared with F_{2}
2) Lesser number of London forces are present in I_{2} when compared with F_{2}
3) F_{2} and I_{2} have same extent of London forces.
4) I_{2} has low bond dissociation energy
9. The melting point of four substances are given in bracket then the attraction forces in a solid is more in case of
1) Ice (273 K)
2) $\mathrm{NaF}(1270 \mathrm{~K})$
3) Phosphorous (317 K)
4) Naphthalene (353 K)
10. If thermal energy predominates over intermolecular forces, then the substance changes from \qquad to. \qquad
1) Gas to liquid
2) Liquid to solid
3) Gas to solid
4) Liquid to gas
11. The intermolecular force of attraction present between NH_{3} and $\mathbf{C}_{6} \mathbf{H}_{6}$ are
1) Dipole - dipole
2) Ion - dipole
3) Dipole - induced dipole
4) Dispersion
12. Hydration of different ions is an example of
1) Ion - dipole interaction
2) Dipole - dipole interaction
3) Dipole - induced dipole
4) Dispersion
13. The inter molecular forces present in inert gases are
1) Ion - ion
2) Ion - dipole
3) Dipole - dipole
4) Dispersion
14. The term Van der Waals forces refers to
1) Dipole - dipole interaction
2) Dipole - induced dipole
3) Dispersion forces
4) All the above
15. The interactions that are results of temporary dipoles induced in the ordinarily non-polar molecules are
1) Dispersion forces
2) Dipole - dipole
3) Dipole induced dipole
4) Hydrogen bonding
16. When sodium metal is dropped in liquid NH_{3}, it forms Na^{+}and gets ammoniated. Which of the following forces are responsible for the formation of ammoniated sodium ion?
1) Ion - induced dipole
2) Dipole - dipole
3) Ion - dipole
4) Dipole - induced dipole
17. Non polar compounds can also solidify because of
1) Van der waals forces
2) Dipole - dipole interaction
3) Ionic bonds
4) Hydrogen bonds
18. Inter molecular forces in solid hydrogen are
1) Covalent forces
2) Vander Waals forces
3) Hydrogen bond
4) All
19. The value of the universal gas constant R depends upon the
1) Nature of the gas
2) Mass of the gas
3) Temperature of the gas
4) The units of measurement
20. The SI unit of pressure is Pascal and it is equal to the pressure exerted by
1) A mass of 10.2 gram on $1.00 \mathrm{~cm}^{2}$ area
2) A mass of 1.02 gram on $1.00 \mathrm{~cm}^{2}$ area
3) A mass of 1.02 mg on $1.00 \mathrm{~cm}^{2}$ area
4) A mass of 10.2 mg on $1.00 \mathrm{~cm}^{2}$ area
21. What is the value of gas constant R in $J^{\text {mol }}{ }^{-1} K^{-1}$?
1) 82.1
2) 8.314×10^{7}
3) 8.314
4) 0.0821
22. ' n ' moles of an ideal gas at temperature ' T ' occupy ' V ' liters of volume, exerting a pressure of ' \mathbf{P} ' atmospheres. What is its concentration in mole lit $^{-1}(\mathbf{R}=$ gas constant $)$
1) $R T / P$
2) $P / R T$
3) R / P
4) R / PT

23. According to Avogadro's law the correct statements are

a) Volume of gas is proportional to the no. of moles at constant T and P
b) The pressure of a gas is directly proportional to temp. Of the gas under all conditions
c) Equal volumes of different gases under similar conditions consist of equal no. of molecules
d) Equal volumes of different gases under same conditions have equal no. of atoms

1) b, c
2) a, c
3) d, b
4) c, d
24. Assertion (A): At $\mathbf{2 7 3 K}$ and 0.5 atms pressure 1 L of H_{2} and 1 L of CO_{2} contain same number of molecules

Reason (R): Equal volumes ôf all gases contain equal number of molecules under the same conditions of temperature and pressure

1. Both A and R are true, R is correct explanation to A.
2. Both A and R are true, R is not correct explanation to A.
3. A is true but R is false.
4. A is false and R is true.
5. Which of the following changes cannot increase the volume of a gas by 4 times?
1) T is doubled, P is decreased to half
2) P is kept constant; T is increased by 4 times
3) ' t ' is doubled, P is decreased to half
4) 't' is kept constant, P is decreased to $1 / 4$ th

www.sakshieducation.com

HINT: $\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$

26. Value of R in SI units is

1) $8.315 \times 10^{7} \mathrm{erg} \mathrm{K}^{-1} \mathrm{~mole}^{-1}$
2) $8.315 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mole}^{-1}$
3) 0.0823 lit.atm $\cdot \mathrm{K}^{-1} \mathrm{~mole}^{-1}$
4) $2 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mole}^{-1}$
27. Which of the following is independent of temperature of a gas
1) Density
2) Rate of diffusion
3) Molecular weight
4) Volume

28. The gas constant R represents work done

1) Per molecule
2) Per Degree absolute
3) Per Degree per mole
4) Per mole
29. Ideal gases obey Gas Laws at
30. Low T, low P
31. Low P, high T
32. High P, Low T
33. At all P\&T's
34. A real gas show deviation from ideal behavior at
1) High temperature and Low pressure
2) High pressure and Low temperature
3) High pressûre and High temperature
4) Low pressure and Low temperature
31. The Boyle's law can be expressed graphically as
1))

2)

3)

4) All of these

www.sakshieducation.com

32. When the pressure on a gas is decreased to $1 / 4$ and the absolute temperature is increased four-fold the volume of the gas
1) Increases by 16 times
2) Decreases to $1 / 16$
3) Increases by 8 times
4) Remains the same

Hint: $\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$
33. The temperature of a gas is increased by $1^{\circ} \mathrm{C}$. Then from the following statements pick out the correct one
a) The volume increases by $1 / 273$ of its volume at $0^{\circ} \mathrm{C}$ at constant pressure
b) The pressure increases by $1 / 273$ of its pressure at $0^{\circ} \mathrm{C}$ at constant volume
c) The volume decreases by $1 / 273$ of its volume at $0^{\circ} \mathrm{C}$
d) The pressure is doubled to its pressure at $0^{\circ} \mathrm{C}$

1) a, c
2) c, d
3) a, b
4) b, c
34. Which of the following are correct statements?
a) 760 torr is equal to 1 atmosphere
b) 10^{6} dynes $/ \mathrm{cm}^{2}$ is called 1 Bar
c) 10^{5} Newtons $/ \mathrm{m}^{2}$ is pascal
d) 1 atmosphere is 1.013×10^{5} dynes $/ \mathrm{m}^{2}$
1) a, c
2) a, b
3) a, d
4) c, d
35. 1 mole of any gas
a) Occupies 22.4 lit at STP
b) Contains 3.05×10^{22} molecules
c) Contains 6.023×10^{23} molecules
d) Contain same number of molecules as in 22 gm of CO_{2}
1) b, d
2) a, c
3) b, c
4) a, d
36. From the graph the correct order of temperatures is

1) $T_{3}>T_{2}>T_{1}$
2) $T_{3}<T_{2}<T_{1}$
3) $T_{3}=T_{2}=T_{1}$
4) $T_{3}>T_{2}<T_{1}$
37. Which of the following indicates the isotherms?
a)

c)

d)

1) a, d
2) a, c
3) b, d
4) b, c
38. Which of the following indicates Charles's law mathematically (when n, P are constant)?
a) $\mathrm{VT}=$ constant
b) $V_{t}=V_{0}\left(1+\frac{t}{273}\right)$
c) $V_{0}=V_{t}\left(1+\frac{t}{273}\right)$
d) $\mathrm{V} / \mathrm{T}=$ constant (when n, P are constant)
1) a, c
2) a, b
3) b, c
4) b, d
39. At absolute zero which of the following statements about an ideal gas are correct?
a) The motion of gaseous molecules ceases
b) The volume of gas increases by 273 times
c) The K.E of gas molecules increases ab normally
d) The volume of a gas becomes zero
1) b, d
2) b, c
3) c, d
4) a, d
40. A gas of volume 2000 ml is kept in a vessel at a pressure of 10^{6} Pascal's at a temperature of $27^{\circ} \mathrm{C}$. If the pressure is increased to 10^{4} Pascal's at the same temperature, the volume of the gas becomes
1) 1000 ml
2) 20 ml
3) 2 ml
4) 200 ml

Hint: $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
41. At a constant temperature a gas is initially at 2 atm pressure. To compress it to $1 / 8$ th of its initial volume, pressure to be applied is

1) $4 a t m$
2) 8 atm
3) 12 atm
4) 16 atm

Hint: $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
42. The volume of a given mass of a gas is 100 ml at $100^{0} \mathrm{C}$. If pressure is kept constant at what temperature will the sample have the volume of 200 ml ?

1) $50^{\circ} \mathrm{C}$
2) $473^{\circ} \mathrm{C}$
3) $200^{\circ} \mathrm{C}$
4) $400^{\circ} \mathrm{C}$

Hint: $\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
43. At what temperature, the volume of ' V ' of a certain mass of gas at $37^{\circ} \mathbf{C}$ will be doubled, keeping the pressure constant?

1) $327^{\circ} \mathrm{C}$
2) $347^{\circ} \mathrm{C}$
3) $527^{\circ} \mathrm{C}$
4) $54^{\circ} \mathrm{C}$

Hint: $\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
44. One litre of a gas weights 2 g at 300 K and 1atm. pressure. If the pressure is made 0.75 atm , at which temperature will one litre of the same gas weights 1 g

1) 600 K
2) 800 K
3) 900 K
4) 450 K

Hint: $\frac{P_{1}}{w_{1} T_{1}}=\frac{P_{2}}{w_{2} T_{2}}$
45. The total pressure of a mixture of 8 g of oxygen and 14 g of nitrogen contained in a 11.2 L vessel at $0^{\circ} \mathrm{C}$ is.

1) 0.5 atm
2) 1 atm
3) 1.5 atm
4) 2 atm

Hint: $\mathrm{PV}=\mathrm{nRT}$
46. The density of a gas is $2.5 \mathrm{~g} / \mathrm{L}$ at $127^{\circ} \mathrm{C}$ and 1 atm . The molecular weight of the gas is

1) 82.1
2) 41.05
3) 56
4) 28

Hint: $\mathrm{PM}=\mathrm{dRT}$
47. The molar volume of an ideal gas at one atmosphere and $273^{\circ} \mathrm{C}$ is

1) 22.4 L
2) 44.8 L
3) 11.2 L
4) 5.6 L

Hint: $p v=n R T$
48. The density of a gas is $2 \mathrm{~g} / \mathrm{L}$ at 1 atm and $27^{\circ} \mathrm{C}$. The density of the same gas at 2 atm and $127^{\circ} \mathrm{C}$ is

1) $3 \mathrm{~g} / \mathrm{L}$
2) $1.33 \mathrm{~g} / \mathrm{L}$
3) $2 \mathrm{~g} / \mathrm{L}$
4) $1 \mathrm{~g} / \mathrm{L}$

Hint: $\frac{\mathrm{d}_{1} \mathrm{~T}_{1}}{\mathrm{P}_{1}}=\frac{\mathrm{d}_{2} \mathrm{~T}_{2}}{\mathrm{P}_{2}}$
49. How much should the pressure be increased in order to decrease the volume of a gas by 5% at constant temperature?

1) 25%
2) 10%
3) 4.26%
4) 5.26%

Hint: $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
50. 16 gm of oxygen and 3 gm of hydrogen are present in a vessel at $0^{\circ} \mathrm{C}$ and 760 mm of Hg pressure. Volume of the vessel is

1) 22.4 L
2) 44.8 L
3) 11.2 L
4) 5.6 L

Hint: pv=nRT
51. If the pressure and absolute temperature of 4 litres of SO_{2} gas are doubled, the volume of this gas would be

1) 1 litre
2) 4 litres
3) 2 litres
4) 8 litres

Hint: $\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$
52. For a given mass of gas, if pressure is reduced to half and the absolute temperature is increased two times, then the volume would be become?

1) $V / 4$
2) 4 V
3) $2 \mathrm{~V}^{2}$
4) 6 V

Hint: $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
53. When the pressure of 2 litres of CO_{2} gas is doubled and its temperature is also doubled from 200 K to 400 K , the final volume of the gas is

1) 4 lit
2) 20 lit
3) 40 lit
4) 2 lit

Hint: $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
54. If one mole of a gas A (mol.wt-40) occupies a volume of $20 l i t r e s$, under the same conditions of temperature and pressure the volume occupied by 2 moles of gas $B(\mathbf{m o l} . w t=80)$ is

1) 80 L
2) 60 L
3) 50 L
4) 40 L

Hint: $\mathrm{V}_{1} / \mathrm{n}_{1}=\mathrm{V}_{2} / \mathrm{n}_{2}$
55. Four one litre flasks are separately filled with gases $\mathrm{O}_{\mathbf{2}}, \mathrm{F}_{\mathbf{2}}, \mathrm{CH}_{\mathbf{4}}$ and CO_{2} under same conditions the ratio of number of molecules in these gases

1) $2: 2: 4: 3$
2) $1: 1: 1: 1$
3) $1: 2: 3: 4$
4) $2: 2: 3: 4$

Hint: Avogadro's law; equal volumes of all gases contain equal no. of molecules under same conditions of P\&T.
56. The weight of one litre of a gas at 1atm. Pressure and 300 K is $\mathbf{4 g}$. At what temperature the weight of the gas is 4 g when the pressure is made 0.5 atm and volume is 1 litre?

1) 200 K
2) 150 K
3) 600 K
4) 1200 K

Hint: $\frac{P_{1}}{w_{1} T_{1}}=\frac{P_{2}}{w_{2} T_{2}}$
57. The Molecular weight of a gas is 40 . At 400 K if 120 g of this gas has a volume of 20 litres, the pressure of the gas in atm is

1) 4.92
2) 5.02
3) 49.6
4) 0.546

Hint: $\mathrm{pv}=(\mathrm{w} / \mathrm{M}) \mathrm{RT}$
58. At $127^{0} \mathrm{C}$ and 1 atm . pressure, a mixture of a gas contains 0.3 mole of \mathbf{N}_{2}, 0.2 mole of O_{2}. The volume of the mixture is

1) 15 lit
2) 22.4 lit
3) 18.2 lit
4) 16.4 lit
59. ' x ' moles of \mathbf{N}_{2} gas at S.T.P. conditions occupy a volume of $\mathbf{1 0}$ litres, then the volume of ' 2 x ' moles of CH_{4} at $\mathbf{2 7 3}{ }^{\circ} \mathrm{C}$ and 1.5 atm is
1) 20 lit
2) 26.6 lit
3) 5 lit
4) 16.6 lit

Hint: $\mathrm{V}_{1} / \mathrm{n}_{1}=\mathrm{V}_{2} / \mathrm{n}_{2}$
60. A gaseous mixture containing 0.35 g of N_{2} and 5600 ml of O_{2} at STP is kept in a 5 litres flask at $\mathbf{3 0 0 K}$. The total pressure of the gaseous mixture is

1) 1.293 atm *
2) 1.2315 atm
3) 12.315 atm
4) 0.616 atm

Hint: $\mathrm{pv}=\mathrm{nRT}, \mathrm{n}_{1}=\mathrm{w} / \mathrm{M}=0.35 / 28=0.125, \mathrm{n}_{2}=5600 / 22400=0.25, \mathrm{n}=\mathrm{n} 1+\mathrm{n} 2$
61. Balloons of 4 L capacity are to be filled with Hydrogen at a pressure of 1 atm and $27^{\circ} \mathrm{C}$ from an 8 L cylinder containing Hydrogen at 10 atm at the same temperature. The number of balloons that can be filled is

1) 20
2) 18
3) 40
4) 38

Hint $=$ no.ofballons $=\frac{V_{1}(P 1-P 2)}{P 2 V 2}$ where $\mathrm{p}_{1}, \mathrm{p}_{2}$ are pressures of gas in cylinder and balloons, $\mathrm{V}_{1 \text { and }} \mathrm{V}_{2}$ are pressures of gas in cylinder and balloons respectively.
62. A steel cylinder of 8 litres capacity contains hydrogen gas at 12atm pressure. At the same temperature how many balloons of 4 litres capacity at 2 atm can be filled up with this gas?

1) 12
2) 48
3) 5
4) 10
63. An open vessel at $27^{\circ} \mathrm{C}$ is heated until three-fourths mass of the air in it has been expelled. Neglecting the expansion of the vessel, the temperature to which the vessel has been heated is
1) $927^{\circ} \mathrm{C}$
2) $108^{\circ} \mathrm{C}$
3) $1000^{\circ} \mathrm{C}$
4) $477^{\circ} \mathrm{C}$

Hint: $\mathrm{n}_{1} \mathrm{~T}_{1}=\mathrm{n}_{2} \mathrm{~T}_{2}$,
Where $n_{1}=1, n_{2}=$ moles left $=1-3 / 4=1 / 4$
64. An open flask has Helium gas at 2 atm and $327^{\circ} \mathrm{C}$. The flask is heated to $527^{\circ} \mathrm{C}$ at the same pressure. The fraction of original gas remaining in the flask is

1) $3 / 4$
2) $1 / 4$
3) $1 / 2$
4) $2 / 5$

Hint: $\mathrm{n}_{1} \mathrm{~T}_{1}=\mathrm{n}_{2} \mathrm{~T}_{2}$
65. A gas cylinder withstands a pressure of 14.9 atm . Its pressure gauze indicates 12 atm . at $27^{\circ} \mathrm{C}$.If the building catches fire suddenly, at what temperature the cylinder explodes?

1) $9.95^{\circ} \mathrm{C}$
2) $0.995^{\circ} \mathrm{C}$
3) $1.990^{\circ} \mathrm{C}$
4) $99.5^{\circ} \mathrm{C}$

Hint: $\mathrm{p}_{1} / \mathrm{T}_{1}=\mathrm{p}_{2} / \mathrm{T}_{2}$,

KEY

1) 3
2) 2
3) 4
4) 2
5) 4
6) 1
7) 2
8) 1
9) 2
10) 4
11) 4
12) 1
13) 4
14) 4
15) 1
16) 3 17) 1
17) 2
18) $4 \quad 2 0 \longdiv { 4 }$
19) $3 \quad$ 22) $2 \quad$ 23) $2 \quad 241$
20) 3 26) 2 27) 3 28) 3
294
21) 2
22) 4 32) 1 33) 3 34) 2
23) 2 36) 1 37) 2 38) 4 39) 4 40) 2
24)
25) 2 43) 2 44) 4
26) 3
27) 1
28) 2
29) 1
30) $4 \quad$ 50) 2
31) 2
32) 2 53) 4 54) 4
33) 2 56) 2
34) 1
35) 4
36) $2 \quad 60) 1$
37) 2 62) 4 63) 1
38) 1
39) 4
