Some P-Block Elements

LEVEL - I

General Introduction, Electronic Configuration, Occurrence, Variation of

Properties, Oxidation States, Trends in Chemical Reactivity

1.	The most abundant metal in earth's crust is					
	1) Oxygen	2) Aluminiun	m 3)	Iron	4) Silicon	
2.	The rare element	of the IIIA g	roup elements	s is	C, O	
	1) Aluminium	2) Boron	3)	Gallium	4) Indium	
3.	The atomic volum	ne of which el	ement is least			
	1) Boron	2) Aluminiu	m 3) (Gallium	4) Thallium	
4.	Al and Ga have n	early the sam	ne covalent ra	dii, because of		
	1) Greater shieldir	ng effect of 's'	electrons of 'G	la' atoms		
	2) Poor shielding	effect of's' ele	ctrons of 'Ga'	atoms		
	3) Poor shielding	effect of 'd' ele	ectrons of 'Ga'	atoms		
	4) Greater shielding effect of d' electrons of 'Ga' atoms					
5.	Among IIIA gro	oup elements	the elements	s with highest	and lowest ionisation	
5.	Among IIIA gro potential are	oup elements	the elements	s with highest	and lowest ionisation	
5.	Among IIIA gro potential are 1) B, Tl	2) B, In	the elements 3) B, Al	4) B, Ga	and lowest ionisation	
5. 6.	Among IIIA gro potential are 1) B, Tl IIIA group eleme	2) B, In ent with lowes	the elements 3) B, Al t electro- neg	4) B, Ga ativity	and lowest ionisation	
5. 6.	Among IIIA gro potential are 1) B, Tl IIIA group eleme 1) Al	2) B, In mt with lowes 2) Tl	the elements 3) B, Al t electro- neg 3) B	 4) B, Ga ativity 4) Ga 	and lowest ionisation	
5. 6. 7.	Among IIIA gro potential are 1) B, Tl IIIA group eleme 1) Al The IIIA element	2) B, In ant with lowes 2) Tl a with highest	the elements 3) B, Al t electro- neg 3) B melting point	 4) B, Ga ativity 4) Ga 	and lowest ionisation	
5. 6. 7.	Among IIIA gro potential are 1) B, Tl IIIA group eleme 1) Al The IIIA element 1) Boron	2) B, In 2) B, In ant with lowes 2) Tl with highest 2) Gallium	 the elements 3) B, Al t electro- neg 3) B melting point 3) Indium 	 a with highest 4) B, Ga ativity 4) Ga t is 4) Thaliur 	and lowest ionisation	
 5. 6. 7. 8. 	Among IIIA gro potential are 1) B, Tl IIIA group element 1) Al The IIIA element 1) Boron The IIIA element	2) B, In 2) B, In 10 with lowes 2) Tl 2) Tl 2) Gallium 2) Gallium	 the elements 3) B, Al t electro- neg 3) B melting point 3) Indium elting point is 	 a with highest 4) B, Ga ativity 4) Ga t is 4) Thaliur 	and lowest ionisation	
5. 6. 7. 8.	Among IIIA gro potential are 1) B, Tl IIIA group eleme 1) Al The IIIA element 1) Boron The IIIA element 1) Boron	2) B, In 2) B, In 2) Tl 2) Tl 2) Tl 2) Gallium 2) Gallium 2) Indium	 the elements 3) B, Al t electro- neg 3) B melting point 3) Indium elting point is 3) Gallium 	 4) B, Ga 4) B, Ga ativity 4) Ga t is 4) Thaliur 4) Alumin 	and lowest ionisation n	
 5. 6. 7. 8. 9. 	Among IIIA gro potential are 1) B, Tl IIIA group eleme 1) Al The IIIA element 1) Boron The IIIA element 1) Boron	2) B, In 2) B, In 10 with lowes 2) Tl 2) Tl 2) Gallium 2) Gallium 2) Indium 2) Indium	the elements 3) B, Al t electro- neg 3) B melting point 3) Indium elting point is 3) Gallium ot exhibit iner	 4) B, Ga 4) B, Ga ativity 4) Ga t is 4) Thaliur 4) Alumin t pair effect? 	and lowest ionisation n ium	

10.	+1 oxidation state	is stable for	the element	
	1) B	2) Al	3) Ga	4) Tl
11.	Thallous chloride	is more stabl	e than Thallic chlo	oride because of
	1) More ionic chara	acter		
	2) Larger size of Tl	+ ion		\sim
	3) High hydration e	energy of Tl ⁺	ion	
	4) Inert pair effect			C V
12.	Which reacts with	acids as wel	l as alkalies?	
	1) Mg	2) Si	3) Al	4) Cu
13.	Element with gian	t molecular s	structure is	
	1) B	2) Al	3) Ga	4) Tl
14.	The abundance	of B. Al. G	a and TI in eart	h crust follows the order
	1) $B < Al < Ga < TI$		2) TI < B < Al <	< Ga
	3) $TI < Al < B < Ga$		4) TI < Ga < B <	< Al
15.	Melting point o	of B, Al, Ga	and TI decreasi	ng in the order
	1) $B > Al > Tl > Ga$	19	2) B = Al > TI =	= Ga
	3) B > Al > TI = Ga		4) Tl > Ga > Al	> B
16.	An element M re	acts with chl	orine to form a co	mpound "X". The bond angle in
	'X' is. What is 'M'	19		
	1. Be	2. B		
	3. Mg	4. N		
17.	The hybridization	n of central a	tom in compound	$AlCl_3$ is
	1. SP	2.SP ²	3.SP ³	4. SP ³ d
18.	(A) : Among IIIA	group eleme	nts Boron has higl	hest melting point.
	(R) : Boron has gi	ant polymer	ic structure.	
	The correct a	answer is		

- 1) Both (A) and (R) are true and (R) is the correct explanation of (A).
- 2) Both (A) and (R) are true and (R) is not the correct explanation of (A).
- 3) (A) is true but (R) is false.
- 4) (A) is false but (R) is true.
- **19.** Assertion (A): TlCl₃ acts as a good oxidant.

Reason (R): Tl^{+3} is less stable than Tl^{+} .

The correct answer is

- 1) Both (A) and (R) are true and (R) is the correct explanation of (A).
- 2) Both (A) and (R) are true and (R) is not the correct explanation of (A).
- 3) (A) is true but (R) is false.
- 4) (A) is false but (R) is true.
- 20. The increasing order of acidic nature of B_2O_3 , Al_2O_3 , In_2O_3 and Tl_2O is
 - 1) $Al_2O_3 < In_2O_3 < TI_2O < B_2O_3$
 - 2) $TI_2O < In_2O_3 < Al_2O_3 < B_2O_3$
 - 3) $Al_2O_3 < B_2O_3 < In_2O_3 < TI_2O$
 - 4) $TI_2O < Al_2O_3 < Br_2O_3 < In_2O_3$
- 21. The maximum covalency of Aluminium is '6' where as that of Boron is '4', because
 - 1) Aluminium is more electropositive than Boron.
 - 2) 'Al' can form a cation where as Boron cannot.
 - 3) 'Al' contains vacant'd' orbitals in its valence shell where as Boron does not.
 - 4) 'Al' is a metal where as Boron is a non metal.

Anomalous Properties of First Element of the Group: Boron, Some Important Compounds, Borax, Boric Acid, and Boron Hydrides.

- 22. The non metallic element present in the mineral cryolite is
 - 1) F 2) Cl 3) Br 4) I

The chemical for	mula of Felspar	is	
1) $KAISi_3O_8$	2) Na_3AlF_6 3	$NaAlO_2$	4) $K_2 SO_4 Al_2 (So_4)_3 .4Al (OH)_3$
The maximum co	valency of Boron	is	
1) 4	2) 3 3)	6	4) 5
The maximum co	valency of Alumi	nium is	\sim
1) 3	2) 3 3)	6	4) 5
Aluminium exhibi	its diagonal relat	ionship with	C V
1) Beryllium	2) Silicon 3) Carbon	4) Germanium
Which element ca	nnot form a com	plex cation?	
1) Al	2) B 3)	Cs	4) Bi
Al ₂ O ₃ is		C	0
1) Neutral	2) Amphoteric	3) Basic	4) Acidic
Basicity of H ₃ BO ₃	is		
1) 1	2) 2	3) 3	4) 0
When borax is he	eated strongly it	gives	
1. B ₂ O ₃	2.Na ₂ B ₄ O ₇	3.NaBO ₂	$4.NaBO_2+B_2O_3$
Borax glass is a m	ixture of		
1) $NaBO_2 + B_2O_3$	2) $Na_2B_4O_7 + B_2O_3$	3) $H_2B_4O_7 + B_2O_7$	P_3 4) $Na_2B_4O_7 + 10H_2O + B_2O_3$
Borax bead test i	s responded by:		
1. Divalent metals	2.Hea	vy metals	
3. Light metal	4.Met	als which form	coloured metaborates
Borax bead test is	not given by		
1) Aluminium salt	2) Cobalt salt	3) Copper	4) Nickel salt
The colour of Co	(BO ₂) ₂ is		
1. Blue	2.Green	3.Yellow	4.Violet
	The chemical for 1) $KAISi_3O_8$ The maximum could 1) 4 The maximum could 1) 3 Aluminium exhibit 1) Beryllium Which element ca 1) Al Mich element ca 1) Al Al2O3 is 1) Neutral Basicity of H_3BO_3 is 1) Neutral Basicity of H_3BO_3 is 1) Neutral Basicity of H_3BO_3 is 1) 1 When borax is he 1. B ₂ O ₃ Borax glass is a m 1) $NaBO_2 + B_2O_3$ Borax bead test is 1. Divalent metals 3. Light metal Borax bead test is 1) Aluminium salt The colour of Could 1. Blue	The chemical formula of Felspar1) $KAISi_3O_8$ 2) Na_3AIF_6 3The maximum covalency of Boron1)42)3The maximum covalency of Alumin1)32)3Aluminium exhibits diagonal relat1)32)3Aluminium exhibits diagonal relat1)Beryllium2)Silicon3Officient carnot form a com1)Al2)B3Algo3 is1)Neutral2)AmphotericBasicity of H ₃ BO3 is1)12)2When borax is beated strongly it1.B2O32.Na2B4O7Borax glass is a mixture of1) $NaBO_2 + B_2O_3$ 2) $Na_2B_4O_7 + B_2O_3$ Borax bead test is responded by:1.Divalent metal2.Hea3.Light metal4.MetBorax bead test is responded by:1)Aluminium salt2)1)Aluminium salt2)1)Aluminium salt2)1.Blue2.Green	The chemical formula of Felspar is1) KAISi_2O_8 2) Na_3AIF_6 3) NaAIO_2 The maximum coulor of Born1) 42) 33) 6The maximum coulor of Aluminium exhibits1) 32) 33) 6Aluminium exhibits1) 32) 33) 6Aluminium exhibits1) Beryllium2) Silicon3) CarbonWhich element comment commence cation?1) Al2) B3) CsAlgO3 is1) Neutral2) Amphoter3) BasicBasicity of H_1BO_3 is1) 12) 23) 3When borax is beat estrongly it gives1. B2O32.Na2B4O73.NaBO2Borax glass is a mixture of1) $^{NaBO_2 + B_2O_3}$ 2) $^{Na_2B_4O_7 + B_2O_3}$ 3) $^{H_2B_4O_7 + B_2O_3}$ 3. Light metal2) Cobalt salt3) CopperThe colour of Co (BO2)2 is1. Blue2.Green3.Yellow

35.	5. The metal that does not give the borax bead test					
	1. Chromium	2.Nickel	3.Lead	4.Manganese		
36.	The coloured bea	nd produced v	when borax is hea	ted with Cu is		
	1. Greenish	2.Green whe	n hot & blue when	cold 3. Yellow	4.Red	
37.	In Borax bead tes	t, which comp	pound of the bead	reacts with basic radica	l to	
	form metaborate?	•			\sim	
	1) B_2O_3	2) Na_2BO_3	3) $NaBO_2$	4) $Na_2B_4O_7.10H_2O$		
38.	Which of the follo	wing are the	uses of borax?			
	1) As a flux in met	allurgy				
	2) In making Pyrex	glass		×		
	3) In leather indust	ry for cleaning	5	2		
	4) As a preservativ	e	, (,		
	1) a, b, c only	2) b, c, d onl	y 3) a, b, d only	4) a ,b, c, d		
39.	Borax is used in					
	1. Qualitative ana	lysis 2.	Welding			
	3. Pyrex glass	4.4	A11			
40.	Total number of e	lectrons invo	lved in the format	tion of diborane molecul	e are	
	1) 18	2) 12	3) 6	4) 3		
41.	The non planar m	olecule amon	g the following is			
	1) B ₂ H ₆	2) C ₂ H ₄	3) C ₆ H ₆	4) BCl ₃		
42.	In diborane the hy	ybridization o	of Boron is			
	1) sp	2) sp ²	3) sp ³	4) sp ³ d		
43.	The total number	of vacant orb	oitals involved in k	oond formation in dibora	nne is	
	1) 2	2) 3	3) 4	4) 6		
44.	The H-B-H bridge	ed angle in di	borane is			
	1) 121.5 ⁰	2) 97 ⁰	3) 119 ⁰	4) 1330		

45.	5. The number of three centered, 2 electron bonds in diborane is				
	1) 2	2) 4	3) 3	4) 6	
46.	Total number of e	electrons shar	ed between two B	oron atoms in B_2H_6 are	
	1) 2	2) 3	3) 4	4) 6	
47.	The bonds not pro	esent in dibor	ane are		
	1) B –H	2) B–H–B	3) B–B	4) H–B–H	
48.	The number of br	ridge hydroge	en atoms in dibora	ine is	
	1) 1	2) 2	3) 3	4) 4	
49.	The maximum nu	umber of ator	ns present in the	same plane in diborane molecule	
	is			× V	
	1) 2	2) 6	3) 4	4) 3	
50.	The following can	not be obtain	ed from diborane		
	1) B ₂ O ₃	2) H ₃ BO ₃	3) B ₂ (CH ₃) ₆	4) B ₂ H ₂ (CH ₃) ₄	
51.	The number of	hydrogen at	oms that can be	replaced by methyl groups in	
	diharana ia				
	uiboralle is				
	1) 2	2) 3	3) 4	4) 6	
52.	1) 2Diborane on hydr	2) 3 rolysis gives	3) 4	4) 6	
52.	1) 2 Diborane on hydr 1) B ₂ O ₃	 2) 3 colysis gives 2) H₃BO₃ 	3) 4 3) HBO ₂	4) 6 4) B ₂ N ₃ H ₆	
52. 53.	 1) 2 Diborane on hydr 1) B₂O₃ Diborane reacts v 	2) 3 rolysis gives 2) H ₃ BO ₃ with carbon m	 3) 4 3) HBO₂ anoxide to form 	4) 6 4) B ₂ N ₃ H ₆	
52. 53.	 1) 2 Diborane on hydr 1) B₂O₃ Diborane reacts v 1) BH₃,CO 	2) 3 colysis gives 2) H ₃ BO ₃ vith carbon m 2) B ₃ N ₃ H ₆	 3) 4 3) HBO₂ aonoxide to form 3) H₃BO₃ 	4) 6 4) B ₂ N ₃ H ₆ 4) B ₂ C ₂ H ₂	
52. 53. 54.	 1) 2 Diborane on hydr 1) B₂O₃ Diborane reacts v 1) BH₃.CO The empirical for 	2) 3 olysis gives 2) H ₃ BO ₃ vith carbon m 2) B ₃ N ₃ H ₆ mula of 'X' in	3) 4 3) HBO ₂ conoxide to form 3) H ₃ BO ₃ in the following rea	 4) 6 4) B₂N₃H₆ 4) B₂C₂H₂ action B₂H₆ + NH₃ 'X' 	
52. 53. 54.	 1) 2 Diborane on hydr 1) B₂O₃ Diborane reacts v 1) BH₃.CO The empirical for 1) B₂NH 	2) 3 rolysis gives 2) H ₃ BO ₃ vith carbon m 2) B ₃ N ₃ H ₆ mula of 'X' in 2) BNH ₂	 3) 4 3) HBO₂ aonoxide to form 3) H₃BO₃ a the following reat 3) BNH 	 4) 6 4) B₂N₃H₆ 4) B₂C₂H₂ action B₂H₆ + NH₃ 'X' 4) CH 	
 52. 53. 54. 55. 	 1) 2 Diborane on hydr 1) B₂O₃ Diborane reacts v 1) BH₃,CO The empirical for 1) B₂NH Which is not cor 	2) 3 rolysis gives 2) H ₃ BO ₃ with carbon m 2) B ₃ N ₃ H ₆ mula of 'X' in 2) BNH ₂ rect for H ₃ BO	3) 4 3) HBO ₂ conoxide to form 3) H ₃ BO ₃ n the following rea 3) BNH D3 ?	4) 6 4) B ₂ N ₃ H ₆ 4) B ₂ C ₂ H ₂ action B₂H₆ + NH₃ 'X' 4) CH	
52.53.54.55.	 1) 2 Diborane on hydr 1) B₂O₃ Diborane reacts v 1) BH₃.CO The empirical for 1) B₂NH Which is not cor 1. It is used as ant 	2) 3 rolysis gives 2) H ₃ BO ₃ vith carbon m 2) B ₃ N ₃ H ₆ mula of 'X' in 2) BNH ₂ rect for H ₃ BO	3) 4 3) HBO ₂ conoxide to form 3) H ₃ BO ₃ n the following rea 3) BNH D3 ?	4) 6 4) B ₂ N ₃ H ₆ 4) B ₂ C ₂ H ₂ action B₂H₆ + NH₃ 'X' 4) CH	

- 3. It gives green colour to flame
- 4. All are correct
- 56. $Na_2B_4O_7 + 2H_2O \rightarrow 2NaOH + A$ The compound A is
 - 1) Orthoboric acid 2) Metaboric Acid
 - 3) Tetra Boric Acid 4) Pyroboric acid

57. Orthoboric acid when heated to red hot gives

- 1. Metaboric acid 2. Pyroboric acid
- 3. Boron and water 4. Boric anhydride

58. Assertion (A): Diborane has two types of hydrogen's.

Reason (R): By methylation only four hydrogen atoms of diborane are substituted forming.

- 1. Both A and R are true and R is correct explanation of A.
- 2. Both A and R are true and R is not correct explanation of A.
- 3. A is true but R is false.
- 4. A is false but R is true.

59. Statements regarding B_2H_6

- i) It reacts with NH₃ to form diammoniate of diborane.
- ii) It has two 3-centered 2- electron bonds.
- iii) It does not have any action with chlorine.

The correct statements in above are

1) iii is only correct	2) ii and iii are correct
------------------------	---------------------------

3) i and ii are correct 4) i and iii are correct

60. In diborane the Tau-bonds can be formed by the overlapping of orbitals

1) sp^3-s-sp^3	2) $sp^{3}-sp^{3}$	3) sp^2-sp^3	4) sp^2-s-sp^2
	/ I I		

61. Orthoboric acid contains

1. Pyramidal units2. Linear units3. T-shaped units4. Triangular units

3) N: pyramidal, sp³; B: planar, sp³

4) N: pyramidal, sp³; B: tetrahedral, sp³

68. Electro negativity of group 13 elements follows the order

- 1) B > Ga > Al > Tl > In
- 2) B > TI > Ga > Al > In
- 3) B > TI > ln > Ga > Al
- 4) B > Al > TI > ln > Ga

Aluminium: Uses, Reactions with Acids and Alkalies

69. Bauxite is an oxide mineral of 1. Barium 2.Boron 3.Bismuth 4.Aluminium 70. Which is not a mineral of aluminium? 2.Bauxite 1. Anhydrite 3. Corundum 4.Diaspore 71. Kernite is a mineral containing 1. Aluminium 2.Gallium 3.Boron 4.Silicon The important source of boron is 72. 2.Carnalite 3.Colemanite 1. Calamine 4.Croylite 73. Heating an aqueous solution of aluminium chloride to dryness will give 2) Al_2Cl_6 3) Al_2O_3 4) $Al(OH)Cl_2$ 1) AlCl 74. During electrolytic reduction of Alumina the reaction at cathode is 1) $2H_2O_2 \rightarrow O_2 + 4H^+ + 4e^-$ 2) $3F^- \rightarrow 3F + 3e^-$ 3) $Al^{+3} + 3e^- \rightarrow Al$ 4) $2H^+ + 2e^- \rightarrow H_2$

75. X reacts with aqueous NaOH solution to form Y and H₂. Aqueous solution of Y is heated to 323–333 K and on passing CO₂ into it, Na₂CO₃ and Z were formed. When Z is heated to 1200°C, Al₂O₃ is formed. X, Y and Z respectively are: 1) Al, AlCl₃, NaAlO₂ 2) Zn, Na₂ZnO₂, Al (OH)₃ 3) Al, Al (OH)₃, AlCl₃ 4) Al, NaAlO₂, Al (OH)₃ 76. In metallurgy the substance which can act as de-oxidizer is 1) B 2) Al₂O₃ 3) AlN 4) Al 77. Duralumin is an alloy of 3) Al+Zn+Mg+Ni 4) Al + Cu 1) Al + Mg2) Al+Cu+Mg+Mn 78. AlO⁻₂ ion in aqueous solution exists as 2) $[Al(OH)_4.H_2O]^-$ 3) $[Al(OH)_4(H_2O)_2]^-$ 4) $[Al(OH)_6]^-$ 1) $[Al(OH)_4]^-$ 79. The aqueous solution of borax turns red litmus to 1. Blue 2. No Change 3. Red 4. White 80. Orthoboric acid when heated to red hot gives 1. Metaboric acid 2. Pyroboric acid 3. Boron and water 4.Boric anhydride The hybridization of boron atom in orthoboric acid is 81. 3.sp³ $2.sp^2$ $4.sp^{3}d$ 1. sp 82. Some statements about the structure of diborane are given below. A) NMR and RAMAN spectral studies have confirmed that four hydogens of diborane are one type and remaining two are of another type. B) Electron diffraction studies have shown that diborane contains two coplanar groups. C) Diborane is a planar molecular. D) Boron of diborane undergoes hybridization. The correct statements are

2) Only A and B 3) Only B, C, D 4) All are correct 1) Only A, B, C

83. Assertion (A): Diborane has two types of hydrogen's.

Reason (R): By methylation only four hydrogen atoms of diborane are substituted forming.

- 1. Both A and R are true and R is correct explanation of A.
- 2. Both A and R are true and R is not correct explanation of A.
- 3. A is true but R is false.
- 4. A is false but R is true.

KEY

1) 2	2) 4	3) 1	4) 3	5) 2	6) 1	7) 1	8) 3	9)3	10) 4
11) 4	12) 3	13) 1	14) 4	15) 1	16) 2	17) 2	18)1	29) 1	20) 2
21) 3	22) 4	23) 1	24) 1	25) 3	26) 1	27)2	28) 2	29) 1	30) 4
31) 1	32) 4	33) 1	34) 1	35) 3	36)3	37) 1	38) 4	39) 4	40) 2
41) 1	42) 3	43) 1	44) 2	45)1	46) 3	47) 3	48) 2	49) 2	50) 3
51) 3	52) 2	53) 1	54)2	55) 4	56) 1	57) 4	58) 1	59) 3	60) 1
61) 4	62) 3	63)2	64) 1	65) 2	66) 4	67) 1	68) 3	69) 4	70)1
71) 1	72)3	73) 3	74) 3	75) 4	76) 4	77) 2	78) 3	79) 1	80)4
81)2	82) 2	83) 1)						
4	N	ц.							

14TH GROUP ELEMENTS

	General Introduction, Electronic Configuration, Occurrence, Variation of				
	Properties, Ox	idation States, Trer	nds in Chemical R	eactivity	
84.	The valency shell config	guration of IVA ele	ment is		
	1) ns ² np ¹	2) ns ² np ²	3) ns ² np ³	4) ns ² np ⁴	
85.	The most abundant IV	A group element in	the earth's crust i	s	
	1) Germanium	2) Carbon	3) Silicon	4) Tin	
86.	The following element of	occurs in the free st	ate		
	1) Carbon	2) Lead	3) Tin	4) Silicon	
87.	The IVA element with	highest and lowest f	irst ionisation pot	ential values	
	1) C, Pb	2) C, Sn	3) C, Si	4) Si, Pb	
88.	Among the following, n	netalloid is	5		
	1) C	2) S	3) Ge	4) Pb	
89.	Which one of the follow	ving element has the	e highest melting p	point?	
	1) Si	2) Pb	3) Sn	4) C	
90.	The element with the le	ast density among l	IVA group elemen	ıts is	
	1) Carbon	2) Silicon	3) Tin	4) Lead	
91.	The incorrect statemen	t related to the elen	nents of IVA grou	p is	
	1) The electro negativity	of Si and Ge is same	e		
	2) The density of silicon	is least			
	3) Carbon has higher firs	t ionisation potential	l		
	4) Lead has the lowest fi	rst ionization potenti	al		
92.	Carbon forms a large n	umber of compoun	ds because		
	1) Fixed valency		2) Non-metallic na	ature	
	3) High ionisation potent	ial	4) High catenation	n ability	

93.	The following bond has	s highest en	ergy	
	1) Si–Si	2) C–C	3) Sn–Sn	4) Pb–Pb
94.	Carbon has the highest	t catenation	character because	
	1) C is more electronega	tive	2) C has higher ionisation	potential value
	3) C has only one stable	isotope	4) C–C bond is strong	
95.	The element of IVA gr	oup that ha	s no catenation ability	
	1) C	2) Si	3) Ge	4) Pb
96.	Common oxidation sta	te of IVA g	roup elements is	U
	1) +IV	2) +I	3) +III	4) +II
97.	+2 oxidation state of le	ad is more s	stable than +4, because of	
	1) Penetration power		2) Octet configura	ation
	3) Inert pair effect		4) Presence of vac	cant orbitals
98.	The element exhibiting	, inert pair o	effect is	
	1) Carbon	2) Silicon	3) Diamond	4) Lead
99.	Tin shows the oxidation	n state(s)		
	1) +2, +4	2) +1, +2	3) +3, +4	4) Only +4
100). Stable oxidation state	of lead is		
	1) +2	2) +1, +2	3) +3, +4	4) +4
101	. Which of the followi	ng stateme	nts is correct with respec	ct to the property of
	elements with increase	in atomic n	umber in the carbon fami	ly?
	1) The metallic characte	r decreases	2) The stability of $+2 \text{ oxid}$	dation state increases
	3) Their ionisation energ	gy increases	4) Their atomic size decre	eases
102	2. Which of the following	g cannot for	rm complex compounds?	
	1) C	2) Si	3) Ge	4) Al
103	8. Which of the followin	g is a semic	onductor?	
	1) C	2) Si	3) Ge	4) 2 and 3

112. (A): Carbon forms a large number of compounds.

(R): Carbon has high catenation power.

The correct answer is

- 1) Both (A) and (R) are true and (R) is the correct explanation of (A).
- 2) Both (A) and (R) are true and (R) is not the correct explanation of (A).
- 3) (A) is true but (R) is false.
- 4) (A) is false but (R) is true.

113. CO can be used as a fuel but not CO₂ because

- 1) CO₂ is not a good fuel.
- 2) CO is a good fuel.
- 3) CO can be oxidized but not CO_2 .
- 4) CO_2 can be oxidized but not CO.

114. The order of calorific values of fuel gases is

1)Carburetted water gas > Producer gas > Semi water gas

2)Carburetted water gas > Semi water gas > Producer gas

3)Producer gas > Semi water gas > Carburetted water gas

4)Semi water gas > Producer gas > Carburetted water gas

115. Regarding fuel gases

- I) Water gas is called blue gas.
- II) Major component in producer gas is CO.
- III) Major component in semi water gas is N₂.

The correct combination is

- 1) I & III are correct 2) I & II are correct
- 3) All are correct 4) II & III are correct

116. Which of the following oxides is amphoteric in character?

1) CaO 2) CO₂ 3) SiO₂ 4) SnO₂

117. The stability of dihalides of Si, Ge, Sn and Pb increases steadily in the sequence

- 1) $PbX_2 < Sn X_2 < Ge X_2 < Si X_2$ 2) $GeX_2 < Si X_2 < Sn X_2 < Pb X_2$
- 3) $\operatorname{Si} X_2 < \operatorname{Ge} X_2 < \operatorname{Pb} X_2 < \operatorname{Sn} X_2$ 4) $\operatorname{Si} X_2 < \operatorname{Ge} X_2 < \operatorname{Sn} X_2 < \operatorname{Pb} X_2$

Anomalous Behaviour of First Element: Carbon, Allotropic Forms, Physical and Chemical Properties, Uses of Some Important Compounds: Oxides

•

118. Which is not an allotro	pe of carbon?		
1) Graphite	2) Diamond	3) Carborundum	4) Coke
119. The geometry of 'C' in	diamond is		
1) Planar	2) Tetrahedral	3) Linear	4) Octahedral
120. The number of carbon	atoms bonded to ea	ach carbon atom i	n diamond crystal is
1) 2	2) 4	3) 3	4) 1
121. C–C bond length in Di	amond is		
1) 1.33Å	2) 1.54Å	3) 1.20Å	4) 1.8Å
122. Diamond is hard becau	ise of bond pre	sent in it.	
1) Covalent	2) Ionic	3) Dative	4) Metallic
123. Delocalised electrons a	re not present in		
1) Petroleum Coke	2) Graphite	3) Gas Carbon	4) Diamond
124. When diamond is heat	ed in vacuum at 200	00 ⁰ C, the substanc	e formed is
1) Amorphous carbon	2) Coal	3) Graphite	4) Carbon monoxide
125. The formula of Carbor	undum is		
1) SiO ₂	2) Na ₂ SiO ₃	3) SiC	4) H ₄ SiO ₄

126. Thermodynamically most stable allotrope of carbon is						
1) Diamond	2) Graphite	3) Coal	4) Coke			
127. In graphite hybr	ridization of carbon is					
1) sp	2) sp ²	3) sp^3d	4) sp ³			
128. All carbon atom	128. All carbon atoms are sp ³ hybridised in the following substance except					
1) Methane	2) Ethane	3) Diamond	4) Graphite			
129. Layer structure	is present in		$c_{\rm P}$			
1) Graphite	2) Coal	3) Diamond	4) Coke			
130. The C–C bond l	ength and the distance	between adjacent	layers in graphite are			
1) 1.54A, 3.35A	2) 1.4A, 2.35A	3) 1.42A, 3.35	A 4) 1.34A, 3.35A			
131. Graphite is a go	od conductor, because i	it has				
1) Crystalline stru	icture	2) sp ² hybridis	ed carbon			
3) Free electrons	5	4) Free atoms				
132. Hybridisation of	f carbon atom in carbo	n dioxide is				
1) sp ²	2) sp ³	3) sp	4) dsp ²			
133. The oxide which	exists as solid at room	temperature is				
1) CO	2) CO ₂	3) SiO ₂	4) SO ₂			
134. The following is	an acidic gaseous oxide	9				
1) PbO ₂	2) SnO ₂	3) SiO ₂	4) CO ₂			
135. Water gas is a n	nixture of					
1) $CO_2 + H_2$	2) CO + H ₂	3) CO + N ₂	4) CO ₂ + H ₂ O			
136. Producer gas is	a mixture of					
1) CO + CO ₂	2) CO + H ₂ O	3) CO + N ₂	4) CO + O ₂			
137. The major com	ponent in producer gas	is				
1) H ₂ 2) CO	3) N ₂	4) CO ₂				

138. The common constituent of producer gas and water gas is										
	1) N ₂	2) CO		3) CO ₂	4) H ₂					
139	139. Semi water gas is mainly a mixture of									
	1) N ₂ , CO and H ₂	nd CH ₄								
	3) CH ₄ , CO and H ₂			4) N ₂ , CO ₂ a	nd CO					
140	140. The correct statement among the following is									
	1) Producer gas is manufactured in a generator									
	2) The maximum covalence of silicon is four									
	3) Formation of water ga	as is an endot	hermic r	eaction						
	4) Producer gas is known	n as blue gas								
141	. A mixture of CO, H ₂ a	and hydrocar	rbons is	known as						
	1) Water gas	2) Carburett	ed water	gas						
	3) Semi water gas	4) Producer	gas							
142. A gas which burns with blue flame is										
	1) CO	2) N ₂		3) NO	4) CO ₂					
143. Among the following calorific value is highest for										
	1) Water gas	2) Producer	gas							
	3) Semi water gas	4) Carburett	ed water	gas						
144	. Calorific value lowest	for								
	1) Water gas	2) Producer	gas							
	3) Semi water gas	4) Carburett	ed water	gas						
145. Calorific value is highest for which of the following fuel gas?										
	1) Coal gas 2) Wat	ter gas 3)) Produc	er gas	4) Carbon dioxide gas					
146. The hybrid orbitals with 33.33% s – character are involved in the bonding of										
one of the crystalline allotropes of carbon. The allotrope is										
	1) Carbon black	2) Graphite		3) Diamond	4) Gas carbon					
	,	, 1		,	,					

147. The correct statement regarding Graphite is

- 1) Graphite is not a conductor because; it does not contain free electrons.
- 2) Graphite is a three dimensional conductor because, the p–electrons are delocalised three dimensionally.
- 3) Graphite is a two dimensional conductor because p-electrons are delocalised two dimensionally.
- 4)In graphite all the carbon atoms undergo sp^3 hybridization.

148. The following are some statements about graphite

- I) Used as a lubricant
- II) Used in lead pencils
- III) It has sp hybridised carbons

The correct combination is

- 1) All are correct
- 3) Only II is correct

- 2) Only I and II are correct
- 4) Only II and III are correct

149.(A): Diamond is a very hard element.

(R): Diamond has giant three dimensional network structures and C-C bond is a strong bond.

The correct answer is

1) Both (A) and (R) are true and (R) is the correct explanation of (A).

2) Both (A) and (R) are true and (R) is not the correct explanation of (A).

- 3) (A) is true but (R) is false.
- 4) (A) is false but (R) is true.

150. (A): Diamond is non conductor of electricity.

(R): In diamond carbon atom is sp^2 hybridised.

The correct answer is

- 1) Both (A) and (R) are true and (R) is the correct explanation of (A).
- 2) Both (A) and (R) are true and (R) is not the correct explanation of (A).
- 3) (A) is true but (R) is false.
- 4) (A) is false but (R) is true.
- **151.** (A): Graphite is used as a lubricant.
 - (R): Graphite has a layer lattice structure and the attractive forces between layers are weak.

The correct answer is

- 1) Both (A) and (R) are true and (R) is the correct explanation of (A).
- 2) Both (A) and (R) are true and (R) is not the correct explanation of (A).
- 3) (A) is true but (R) is false.
- 4) (A) is false but (R) is true.

152. The following are some statements about graphite

- I) C–C bond length is $1.42A^{\circ}$
- II) Distance between two layers is 3.35A°
- III) Bond angle is 60°

The correct combination is

- 1) All are correct. 2) Only I and II are correct.
- 3) Only II is correct. 4) All are incorrect.

153. L₁ is the length between two adjacent carbon atoms in a layer and L₂ is the

length in-between two layers of graphite. The approximate ratio between L_1

and L₂ is

1) 1: 1	2) 2: 5	3) 5: 2	4) 1:5
---------	---------	---------	--------

- 154. What is the C-C bond length (in A^o) in diamond
 - 1) 1.54 2) 3.34 3) 2.0 4) 5.2

Important compounds of silicon and a few uses, silicon tetra chloride, silicons, silicates and zeolites, their uses

161. Silica is high melting solid, because

- 1) It exists as discrete molecules.
- 2) It has many resonance structures.
- 3) It has giant network structure.
- 4) Each Si atom is surrounded by 4 Si atoms.

162. Silica has the following structure

1) It exists as discrete	molecules									
2) It has many resonan	2) It has many resonance structures.									
3) It has giant network	3) It has giant network structure.									
4) Each Si atom is surr	4) Each Si atom is surrounded by 4 Si atoms.									
162. Silica has the followi	ng structure	i de la companya de)`							
1) Linear	2) Planar	3) Angular	4) Polymeric							
163. In SiO ₂ each silicon	63. In SiO ₂ each silicon atom is surrounded by									
1) 4 oxygen atoms in a	1) 4 oxygen atoms in a square planar manner									
2) 4 oxygen atoms in a	2) 4 oxygen atoms in a tetrahedral manner									
3) 6 oxygen atoms in a	3) 6 oxygen atoms in a octahedral manner									
4) 3 oxygen atoms in a	4) 3 oxygen atoms in a planar fashion									
164. Silica contains										
1) SiO ^{2–} 4	2) SiO ^{3–} 4									
3) SiO ⁻ 4	4) SiO ₄ tetral	hedral units								
165. The oxidation state o	of Si in H ₂ SiF ₆									
1) + II	2) + IV	3) + VI	4) + VIII							
166. Which of the following	ng reacts with s	ilica?								

- 1) HF 2) HCl 3) HBr 4) HI
- 167. The hybridization of carbon in CO and silicon in SiO_2 respectively are
 - 2) sp², sp² 3) sp, sp³ 4) sp, sp² 1) sp, sp

168. SiO ₂ is not soluble in										
1) HF	2) NaOH	3) KOH	4) HNO ₃							
169. An acidic flux among the following is										
1) CaO	2) MgO	3) SiO ₂	4) CaH ₂							
170. Silicon tetrafluoride on hydrolysis gives										
1) Ortho silicic acid and	1) Ortho silicic acid and meta silicic acid									
2) Ortho silicic acid and	2) Ortho silicic acid and hydrofluoro silicic acid									
3) Meta silicic acid and	3) Meta silicic acid and silica									
4) Meta silicic acid and	Hydrofluoro silicic a	cid								
171. The structure of 'SiO ₂ ' is										
1) Octahedral	2) Tetrahedral	3) Trigonal	4) Linear							
172. Water glass is										
1) Glass made up of wat	er 2) Sodium silicate	3) Water gas	4) Crystal carbonate							
173. The repeating unit of s	silicones									
1) $RSiO_2$	2) $R_2 SiO$	3) $R_2 SiO_2$	4) <i>RSiO</i> ₂							
174. The starting materials	for the formation o	of silicone polymer	's are							
1) Silicates	2) Chloro silanes									
3) Silanes	3) Silanes 4) Silicon carbide									
175. Silicones are the polymers formed by hydrolysis of										
1) Silicondioxides	2) Silanes									
3) Silicates4) Chlorosilanes										
176. The basic structural unit in silicates is										
1) SiO_2 2) Si_2O_6	3) <i>Si</i> ₃ <i>O</i> ₂	4) <i>SiO</i> ₄								

177. Which of the following contain discrete SiO_4^{4-} tetrahedron units? 2) Pyro silicates 3) Cyclic silicates 1) Ortho silicates 4) Asbestos **178.** Asbestos is an example for 1) Zeolite 2) Amphibole 3) Pyroxene 4) Silicone 179. Willimite is an example for 3) 3D silicates 1) Sheet silicates 2) Chain silicates 4) Ortho silicates 180. Amphiboles belongs to 1) Frame work silicates 2) Chain silicates 3) Cyclic silicates 4) Pyro silicates 181. Which of the following is not a frame work silicate? 1) Zeolite 2) Kaolin 4) Feldspar 3) Ultramarine 182. SiO_2 is a solid while CO_2 is a gas, this is because 1) SiO₂ contains weak vanderwaal attraction while CO₂ contains strong covalent bonds. 2) Solid SiO₂ has a three dimensional net work structure whereas CO₂ contain discrete molecules. 3) Both contain strong covalent bonds. 4) Both contain weak vanderwaal attraction. 183. SiO₂ + A \rightarrow X + Y. In this reaction Y is one of the global warming gases. A is the water soluble alkali metal carbonate whose molecular weight is 106. The common name of 'X' is 1) Washing soda 3) Flint glass 2) Baking soda 4) Water glass 184. SiCl₄ undergoes hydrolysis but not CCl₄ since 1) C–Cl bond is stronger than Si–Cl bond 2) Electro negativity of Si is more than C 3) Electro negativity of Cl is greater than C

4) Silicon contains vacant d orbitals and its maximum covalency is 6

185. The following are some statements about SiCl₄

I) SiCl ₄ undergoes h	I) SiCl ₄ undergoes hydrolysis							
II) It acts as a Lewis	II) It acts as a Lewis acid							
III) Si atom is sp ³ hy	III) Si atom is sp ³ hybridised							
The correct combina	The correct combination is							
1) All are correct.	1) All are correct. 2) Only I and II are correct.							
3) Only II is correct.	3) Only II is correct. 4) Only II and III are correct.							
186. What is X in the following reaction?								
SiCl ₄ +H ₂ OX+HCl		0						
1) H ₄ SiO ₄	2) SiH ₄	3) (SiOOH) ₂	4) Si(ClO ₄) ₄					
187. Among the following substituted silanes the one which will give rise to cross								
linked silicone polymer on hydrolysis is								
1) R_2SiCl_2	2) $RSiCl_3$	3) R_2SiCl	4) R_4Si					
188. Identify B in the following reaction								
$H_2SiO_4 \xrightarrow{1000^9C} A \xrightarrow{Carbon} B + CO$								
1) Carborundum	2) Quartz	3) Kieselguhr	4) Sand stone					
189. Hydrolysis of SiCl ₄ g	ives compound X	X and HCl, on heating t	o $1000^{\circ}C$ X looses					
water and forms Y.	water and forms Y. Identify X and Y respectively							
1) $H_2 SiO_4$ and SiO_2	2) SiO_2 and si	3) SiO_2 and SiC	4) H_2SiO_4 and SiC					
190. What is the empiric	al formula of sh	eet silicates?						
1) $(Si_2O_5)_n^{2n-}$	2) $(SiO_3)_n^{2n-}$	3) $(SiO_3)_n^{n-1}$	4) $(Si_2O_7)_n^{3n-}$					

KEY

84) 2	85) 3	86) 1	87) 2	88) 3	89) 4	90) 2	91) 4	92) 4	93) 2
94) 4	95) 4	96) 1	97) 3	98) 4	99) 1	100) 1	101) 2	102)1	103)4
104) 3	105) 1	106) 2	107) 1	108) 1	109) 3	110) 4	111) 2	112)1 1	113) 3
114) 2	115) 1	116) 4	117) 4	118) 3	119) 2	120) 2	121) 2	122) 1	123) 4
124) 3	125) 3	126) 2	127) 2	128) 4	129) 1	130) 3	131) 3	132)3	133) 3
134) 4	135) 2	136) 3	137)3	138)2	139) 1	140) 3	141)2	142)1	143) 4
144) 2	145) 1	146) 2	147)3	148)2	149) 1	150) 3	151)1	152)2	153)2
154) 1	155)1	156) 4	157) 3	158) 4	159) 3	160) 2	161)3	162)4	163)2
164) 4	165) 2	166) 1	167) 3	168) 4	169) 3	170) 2	171) 2	172)2	173)2
174) 2	175) 4	176) 4	177) 1	178) 2	179) 4	180) 2	171) 2	182)2	183)4
184) 4	185) 1	186) 1	187) 2	188) 1	189) 1	190) 1			
			2						
		5							
	1								
2	2								
2									

www.sakshieducation.com