www.sakshieducation.com Respiration

1.	Arrange the following of	compounds in	the inc	reasing orde	r of their ene	rgies	()
	A. ATP B. A	Acetyl Co-A	C. Ma	alic acid D. P	yruvic acid	E.G.	AP	
	1. A—B—D—E—C			2. D—E –B	—C—A			
	3. E—D—B—C—A			4. A—C—I	3 —D—Е			
2.	Complex IV in inner n	nitochondrial	membr	ane is)
	1. Succinic dehydrogena	se	2. Cy	tochrome C	oxidase			
	3. ATP synthase		4. Cy	tochrome C r	eductase			
3.	Total number of ATP r	eleased in the	format	tion of ethyl a	alcohol from	glucos	se	
					1 (1.		()
	1. 2 2. 7		3.4		4. 6			
4.	Ultimate acceptor of ele	ectrons and pi	rotons i	n aerobic res	spiration is		()
	1. $NADPH_2$ 2. N_2	ADH_2	3.H ₂ C		$4.O_2$			
5.	Enzymes participating	in both respir	ation a	nd photosyn	thesis		()
	A. Aldolase			B. Triose pl	nosphate isom	ierase		
	C. Glyceraldehyde phosp	hate dehydrog	genase	D.Transket	colase			
	1. A & B 2. B	& C	3. A,	B & C	4. A ,B, C d	& D		
6.	Number of ATP release	ed in substrate	e level p	hosphorylat	ion in anaero	bic re	spirati	ion
		3				()	
	1. 2 2. 4		3.3		4. 6			
7.	R.Q values of protein is	•					()
	1. Less than 0.4	2. More tha	in one	3. Between	0.8—0.9	4. E	qual to	one
8.	Connecting link of glyc	olysis and citr	ric acid	cycle is			()
	1. Pyruvic acid			2. Phosphoe	enol pyruvic	acid		
•	3. Acetyl Co-A			4. Citric aci	d			
9.	During respiration pH	decreases in					()
	1. Cytosol		2. Ma	atrix of mitoc	hondria			
	3. Perimitochondrial spa	ice	4. In	the membrar	ne			

10. Assertion (A)	: All bacteria are anae	robic		()
Reason (R)	: Mitochondria respon	sible for aerobic r	espiration are a	bsent in	
prokaryotes					
1. Both A & R	are true R is the correc	t explanation of A			
2. Both A & R	are true R is not the co	rrect explanation of	A		
3. A is true bu	t R is wrong				
4. A is wrong	but R is true.				
11. True stateme	nt regarding glycolysis	s is)
A. No oxygen	is used in this process				
B. Glucose do	es not undergo oxidatio	n		. (O)	
C. Glucose is 1	phosphorylated				
D. DHAP can	not participate in substra	ate level phosphoryl	ation		
1. A & B	2. A & C	3. C & D	4. A,C & D)	
12. The first forn	ned substance in Kreb	's cycle is		()
1. OAA	2. Citric a	eid 3. Acety	l Co-A	4. Pyruvic	acid
13. The co factor	that does not participa	ate in the formation	n of acetyl Co-A	A is ()
1. NAD ⁺	2. Co-A	3. NADPH	4. Mg ⁺		
14. Aconitase enz	yme participates in	0		()
1. Dehydration	1	2. Both d	ehydration and l	hydration	
3. Cleavage ar	nd dehydration	4. Oxidat	ion and hydratic	on	
15. False stateme	ent regarding citric aci	id cycle		()
A. All enzyme	es of citric acid cycle are	e present in matrix o	f mitochondria		
B. Oxygen is r	reduced to water				
C. After comp	lete oxidation of glucos	e six CO ₂ are releas	ed here.		
D. This pathw	ay involved both in cata	bolism and anabolis	sm.		
1. A & B	2. B & C	3. A,B & C	4. A,B,C &	. D	
16. α ketoglutario	c acid after oxidation	releases		()
1. CO ₂ and NA	ADH_2 2. CO_2 and	d Co-A			
3. FADH ₂ and	Co-A 4. CO ₂ and	nd FADH ₂			
17. Glucose, a six	carbon compound rel	eases 6 CO ₂ after c	complete oxidat	ion.	
α ketoglutario	c acid, a 5 carbon com	pound releases		()
1. One CO ₂	2. Five CO_2	3. Three CO ₂	4. Fo	our CO ₂	

www.sakshieducation.com

18. Ass	ertion	(A): C i	itric acid c	ycle i	s amphibol	ic path	way			()
Rea	ison	(R): In	this, both	oxid	ation and r	eductio	on reac	tions t	akes pl	ace	
1.B	oth A	& R are	true R is tl	ne cor	rect explana	ation of	A				
2. E	Both A	& R are									
3.A	is true	e but R i	s wrong								
4. A	is wr	ong but	R is true.								
										W.	
19. Ma	tch th	e follow	ring							O ()
			List I		List	II			1.		
	A	Fumar	ase	I	Survives o	nly on	glycoly	sis			
	В	F ₁ part	icle	II	Affinity fo	r mole	cular				
					oxygen		?				
	С	Clostri	idium	III	Water as s	ubstrat	e				
	D	Compl	ex IV	IV	Membrane	bound	compl	ex			
				V	Smallest re	otator y	machi	ne			
		<u> </u>			(6)						
	A	В	C I			A	В	C	D		
1.	IV	III	II G	5	2.	III	IV	I	II		
3.	II	V	III I	V	4.	II	III	IV	V		
20. If C	Slycer	ol has to	o be respir	ed, it	enters the	respira	itory c	ycle as		()
		1									
1. Ac	etyle-	Co-A	2	. Pyrı	uvic acid		3. D	HAP		4. GAP	
21. Nu	mber	of ATP	released w	hen a	all the elect	ron cai	rriers f	ormed	in the	cytosol and	
mit	ochon	dria en	tered the e	lectro	on transpor	·t				()
1.3	0		2. 32		3. 40)		4. 28	3		
22. Tru	ie stat	ement r	egarding	R.Q v	alues					()
A. I	t is an	index o	of nature of	respi	ratory subst	rate					
B. I	t is the	e ratio o	f O ₂ release	ed to t	that of CO ₂	utilized					
C. I	R.Q va	lues of	organic aci	ds are	always mo	re than	one				
D.	It is al	so an in	dex of amo	ount o	f respiratory	substr	ate				
1. A	& B		2. B & 0 WW\		3. C kshieduca	& D ation.o	com	4. A	& C		

23. In aerobic	www.sa bacteria net gain of A	KSnieducation. ATP	com	()
1.38	2. 36	3.40	4. 2		
24. Function o	of ubiquinone in elect	ron transport		()
1. It receive	es two electrons at a tir	ne 2. I	t can transfer one electr	on at a time	;
3. It contain	ns iron and sulfur centi	re's 4. I	t is immobile membran	e protein	
25. For the fo	ormation one moleculo	e of respiratory w	ater number of proton	s accumula	ating
in inter m	embrane space are)
1.6	2.8	3. 10	4. Cannot say		
26. NADH ₂ for	rmed in cytosol when	enters electron tr	ansport the number o	f ATP mole	ecules
formed are	e		C	()
1. Three	2. One	3. Two	4. Nil		
27. False state	ement regarding Com	plex II	.0)	()
1. Has Fe-S	S protein	2. It can transfer e	electrons to ubiquinone		
3. It can tra	anslocate protons	4. It is part of the	Kreb's cycle enzyme po	ool	
28. In ferment	tation reactions enzyr	ne participating i	n reduction of the subs	trate is	
		70		()
1. Alcohol	dehydrogenase	2.0	GAP dehydrogenase		
3. Pyruvic	decorboxylase	4. N	Ialic dehydrogenase		
29. True state	ment regarding respi	ration in plants		()
A. Rate of	respiration in all tissue	s is same			
B. Tissues	showing high respirato	ory rates show more	e mitochondria		
C. Tate of 1	respiration is very high	in cold conditions			
D. Rate of	respiration decreases d	uring ion transport			
1. Only B	2. Only A	3. A & C	4. B, C & D		
30. Assertion	(A): R.Q value for fat	s is always less th	an one	()	
Reason	(R): Fat respiration in	nvolves more use	of water		
1. Both A &	& R are true R is the co	orrect explanation of	of A		
2. Both A &	& R are true R is not th	e correct explanati	on of A		
3. A is true	but R is wrong				
4. A is wro	ong but R is true.				
31. For the con	mplete oxidation of 6	glucose molecules	s the number of Kreb's	scycles	
required a	are			()	
1. One	2. Tw www.sa	elve 3. S kshieducation .		4. Many	

www.sakshieducation.com 32.In oxygen intolerant bacteria the end product of respiration is

											()		
	1. Pyr	uvic	acid		2.	Eth	yl alcohol 3	3. 2 ATP	4.2	ATP &	د NAD	Ή		
33.	Matcl	h th	e followi	ing							()		
				List I			List II							
		A	Comple	ex I		Ι	Succinate ubi	quinone						
							oxydoreducta	se				\wedge		
		В	Complex II			II	Cytochrome '	C' reducta	se					
		С	Complex III			III	NADH-ubiqu	NADH-ubiquinone						
							oxydoreducta)					
		D	Comple	ex IV		IV	ATP synthase)		*				
						V	Cytochrome '	C' oxydas	e					
		A	В	C	D			A B	C	D				
	1.	III	I	II	V		2. I	II II	I	IV				
	3.	III	V	II	I		4. J	III	IV	V				
34.	ATP	forn	nation d	uring 1	esp	irati	on takes place	in			()		
	1. Ma	trix	of mitoc	hondria	ì	•	2. Matr	ix of mitoc	hondria	and cy	ytosol			
	3. In t	he ii	nter men	nbrane	spac	e	4. Cyto	sol and inte	er meml	orane s	pace			
35.	Prote	ins i	nvolvin	g in tra	nsl	ocati	on of protons	across the	memb	ane re	esultin	g in		
	creati	on (of protoi	n motiv	ve fo	orce i	is				()		
	1. Ubi	iquir	none	0										
	2. Cor	nple	ex I and i	abiquin	one									
	3. Ubi	iquir	none, con	nplex I	anc	l con	nplex IV							
	4. Ubi	iquir	none, con	mplex I	, cc	mple	ex IV and comp	olex V						
36.	FAD	H ₂ v	when en	ters ele	ectro	on tr	ansport numb	er of prot	ons trai	ıslocat	es acr	oss the		
7	memb	oran	e are								()		
	1.6			2. 10)		3.8		4. 3					
37.	Disru	ptio	n of AT	P syntl	hase	affe	ects				()		
	A. Wa	ater	formatio	n	В	. AT	P synthesis							
	C. Pro	oton	gradien	t	D	. Ele	ctron transport							
	1. A &	βВ		2. B	& C		3. C & 1	D	4. A	& D				

www.sakshieducation.com 38. When fumaric acid is introduced into Kreb's cycle

- 1. One molecule of water is utilized and one molecule of NADH2 is released
- 2. One FADH₂ and one NADH₂ is released
- 3. One NADH₂ is released
- 4. One molecule of H_2O and one molecule of $NADH_2$ are released
- 39. Assertion (A): Citric acid cycle shows both tricarboxylic and dicarboxylic acids

Reason (R): Tricarboxylic acids loose CO₂

- 1. Both A & R are true R is the correct explanation of A
- 2. Both A & R are true R is not the correct explanation of A
- 3. A is true but R is wrong
- 4. A is wrong but R is true.

MMM.SO

- 40. Proteins enter respiratory chain as
 - 1. GAP

- 2. DHAP
- 3 PEP
- 4. Acetyle Co-A

)

Respiration--Key

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
4	2	3	4	3	2	3	3	3	4	4	2	3	2	3	1	1	3	2	4
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
2	4	1	2	3	3	3	1	1	2	2	2	1	2	3	1	2	1	1	4