www.sakshieducation.com

Quantum Mechanical Model of Atom,

Orbitals and Quantum Numbers

1.	According to Schrodinger model, nature of electron in an atom is as					
	1) Particles only 2) Wave only					
	3) Both simultaneously 4) Sometimes wa		aves and sometimes particles			
2.	The quantum number not obtained from the Schrodinger's wave equation is					
	1) n	2)1	3) m	4) s		
3.	The maximum prob	ability of finding an	electron of a parti	cular energy in an		
	orbital is about		0			
	1) 80%	2) 85%	3) 95%	4) 99%		
4.	Radial part of the w	ave function depends	s on quantum numb	ers		
	1) n and s	2) 1 and m	3) 1 and s	4) n and 1		
5.	d-orbitals are degenerate					
	1) Two fold	2) Fivefold	3) Threefold	4) Four fold		
6.	Maximum number of electrons that can be possible in N - shell is					
	1) 18	2) 8	3) 32	4) 50		
7.	Number of nodal	planes and radial	nodes possible for	· a 3p-orbital are		
	respectively					
	1) 0, 1	2) 1, 2	3) 2, 1	4)1,1		
8.	Which of the followi	ng is true for a 'p' or	bital?			
	1) Dumbbell in shape		2) Has Directional	Character		
	3) Has 'm' value+1,-1 or 0		4) All			
9.	The maximum num	ber of electrons accor	mmodated by 3d su	blevel is		
	1)2	2) 10	3) 6	4) 14		

www.sakshieducation.com

www.sakshieducation.com

10.	The nodal plane for	P_X orbital is					
	1) ZX-plane	2) YZ-plane	3) XY-plane 4) Any One of these			
11.	Number of nodes in	3p orbital is same as	in				
	1) 3s orbital	2) 3d orbital	3) 4p orbital	4) 4d orbital			
12.	Which d-orbital has its four lobes along the axes?						
	1) d_{xy}	2) $d_{x^2-y^2}$	3) d_{z^2}	4) d_{xz}			
13.	In the radial proba	bility distribution cu	rve for the 2s or	bital of the hydrogen			
	atom, the minor m	aximum, the node a	nd the major ma	aximum occur at the			
	following distances from the nucleus respectively						
	1) 1.1 <i>A</i> °,0.53 <i>A</i> °,2.6 <i>A</i> °		2) $0.53A^{\circ}, 1.1A^{\circ}, 2.6A^{\circ}$				
	3) 2.6 <i>A</i> °,1.1 <i>A</i> °,0.53 <i>A</i> °		4) 0.53 <i>A</i> °,2.116 <i>A</i> °	,2.6 <i>A</i> °			
14.	(A): There are two nodal regions in 3d- orbital.						
	(R): d-orbital is in double dumbbell shape.						
	The correct answer is						
	1) Both (A) and (R) are true and (R) is the correct explanation of (A).						
	2) Both (A) and (R) are true and (R) is not the correct explanation of (A).						
	3) (A) is true but (R) is not true.						
	4) (A) is not true but	tt (R) is true.					
15.	For complete descr	iption of an electron	in an atom, the	number of quantum			
	numbers required i	S					
	1) One	2) Two	3) Three	4) Four			
16.	The azimuthal quar	ntum number indicate	28				
	1) Size of the orbital		2) Shape of the orbital				
	2) Orientation of the	orbital	4) Spin of electron				

www.sakshieducation.com

www.sakshieducation.com

17.	Which of the following is indicated by the principal quantum number?							
	1) Size of the orbital			2) Shape of the orbital				
	2) Orientation of the orbital			4) Spin of electron				
18.	The two electrons in	n the same orbital	l have .spin quantum number values					
	1) $+\frac{1}{2}$, $+\frac{1}{2}$	2) $-\frac{1}{2}$, $-\frac{1}{2}$		$(3) + \frac{1}{2}, -\frac{1}{2}$	4) 0, 0			
19.	When n=3, l =0 the	designation given	to th	ne orbital is	~O`			
	1) 4s	2) 4p		3) 3s	4) 3p			
20.	Which of the followi	ng designation is	impo	ossible?	•			
	1) 4s	2) 5d		3) 2f	4) бр			
21.	l = 3, then the values of magnetic quantum numbers are							
	1) ± 1 , ± 2 , ± 3		2) 0, \pm 1, \pm 2, \pm 3					
	3) -1, -2, -3		X	4) 0, +1, +2, +3				
22.	For a p-orbital, the values of m are							
	1) -1, 0, +1			2) 0, +1, +2, +3				
	3) -2, -1, 0, +1, +2	G		4) -3, -2, -1, 0, +1, +	-2, +3			
23.	The impossible set of quantum numbers is							
	1) $n = 2, 1 = 0, m = 0$	0, s = +1/2		2) n = 2, l = 1, m =	0, s = +1/2			
	3) $n = 2, 1 = 0, m = 1$, $s = -1/2$		4) $n = 3, 1 = 1, m =$	-1 , s = $-1/2$			
24.	The azimuthal quar	ntum number for	the la	ast electron in Lithi	um atom is			
	1).1	2) 2		3) 0	4) 3			
25.	5. The two electrons of an orbital differ in their							
	1) Principal quantum number			2) Azimuthal quantum number				
	3) Magnetic quantum number			4) Spin quantum number				

26. Which of the following sets of quantum numbers is correct for an electron in 4 f orbital?

	1) n = 4,	1 = 3, m =	= +4, s =	= +1/2			2) n = 3	3, 1 = 2, m	n = -2, s = +	1/2
	3) n = 4,	1 = 3, m =	= +1, s =	= +1/2			4) n = 4	4, 1 = 4, m	n = -4, s = -	- 1/2
27.	The set o	of quantu	ım num	bers no	ot applie	cable to	an elect	tron is		
	1) 1, 1, 1	, +1/2		2) 1, 0	, 0, +1/2	3)	1, 0, 0, -	1/2 4) 2, 0, 0, +1/	2
28.	The valu	e of m fo	or p _z or	bital i	S				0	
	1) Same	as that of	S-orbit	al		2) S	ame as tl	nat of -orl	oital	
	3) 0					4) A	All of the	se		
29.	The max	timum nu	umber o	of elect	rons tha	nt a p-o	rbital ca	n accom	modate is	
	1)6		2) 2	2		3) 1	0		4) 14	
30.	The number of orbitals in the quantum level $n = 3$ is									
	1)4		2) 9)	6	3) 1	6		4) 18	
	• 0									
KEY										
1)3	2) 4	3)3	4)4	5)2	6)3	7)4	8)4	9)2	10)2	
		C	0							
11)4	12)2	13)2	14)4	15)4	16)2	17)1	18)3	19)3	20)3	
	2	1								
21)2	22)1	23)3	24)3	25)4	26)3	27)1	28)4	29)2	2 30)2	
	$\boldsymbol{\mathcal{L}}$									

www.sakshieducation.com