Photosynthesis

1.	Assertion (A): Photosyn	thesis is a physicoch	nemical reaction		()					
	Reason(R): In Photosynthesis atmospheric carbon dioxide is reduced										
	1) Both A and R are corre	ect and R is the corre	ct explanation of A.								
	2) Both A and R are correct but R is not the correct explanation of A.										
	3) A is true, R is false										
	4) A is false, R is true.				(
2.	In half –leaf experimen	t)					
	1. CO ₂ reduction do not t	ake place 2. O ₂	evolution do not oco	eur							
	3. ATP, NADPH ₂ cannot	be synthesized 4. S	ucrose forms in the p	lastids							
3.	Importance of light in the	photosynthesis is dis	scovered by		()					
	1) Priestly 2) Ir	igenhousz	3) von Sachs	4) Eng	elma;	nn					
4.	The reason for the abse	nce of oxygen evolut	tion in green sulphu	r bacter	ial						
	photosynthesis is		. ()		()					
2. 3.	1. Water is not required f	or the photosynthesis	in these bacteria								
	2. These are unaerobic ba	ncteria									
	3. Hydrogen donor for reduction of CO ₂ is not water.										
	4. Energy is insufficient i	n pigments.									
5.	When incident light is bright ())								
	1. Chloroplasts arrange w										
	2. Chloroplasts arrange with their flat surfaces perpendicular to the walls.										
	3. Chloroplasts arrange ra	andomly.									
	4. Some chloroplasts arrange with their flat surfaces parallel and some perpendicular t										
	the walls.										
6.	Dark reactions take pla	ce during			()					
	1. Night	2. In	the absence of the lig	ght							
	3. In the presence of light	t 4. Ni	ight and day as they a	are bioch	emica	ıl					
7.	Colour of chlorophyll 'a	ı' is			()					
	1. Yellow green	2.Greenish brown	3. Greenish blue	4. Blui	sh gr	een					
8.	Chlorophyll absorbs wa	velengths of			()					
	1 Green and red 2 B	lue and red	3 Blue and vellow	, 4 Vell	OW 91	nd red					

9.	Accessory photos	synthetic pigments in	angiosperms are		()				
	1. Xanthophylls &	z Carotenoids								
	2. Chlorophyll 'b'									
	3. Chlorophyll 'b'									
	4. Chlorophyll 'b'	and Carotenoids.								
10.	False statement i	egarding photosynth	esis		()				
	I. It shows two dif	fferent reactions- light	and dark			<u></u>				
	II. Thylakoid men	nbranes and stroma are	e required for phot	osynthesis						
	III. Only chloroph	yll 'a' traps light ener	gy		O.					
	IV. Dark reactions	s depend on O2, ATP a	and NADPH ₂ .							
	1. Night	2. II & III	3. III & IV	4. IV & I						
11.	Light reactions in	nclude	*		()				
	A. Light absorption	orylatio	n							
	E. NADPH ₂ form	ation F. CO ₂ reduction		,						
	1. A, B, C	2. B, C, D, E	3. A, C, D, E, F	4. A	, B, C,	D, E				
12.	Antennae of pho	to systems consisting	of		()				
	1. Chlorophyll 'a'	, 'b', Xanthophylls &	Carotenoids							
	2. Chlorophyll 'b'	, Xanthophylls & Card	otenoids							
	3. Chlorophyll 'a'	, Xanthophylls & Card	otenoids							
	4. Xanthophylls &	& Carotenoids								
13.	Photo system II a	absorbs light energy a	at		()				
	1. 680 nm	2. 440 nm	3. 550 nm	4. 700 nm						
14.	PS I and PS II are excited by light energy at									
	1. Red and red 2. Blue and red									
	3. Red and blue	4. Blue and	blue							
15.	'Z' scheme is									
	1. Movement of e									
	2. Movement of e									
	3. Movement of e	lectrons from PS II to	pheophytin to PS l	to NADP						
	4. Movement of e	lectrons from PS I to N	NADP to cytochron	ne b-f to PS II						
16.	Location of PS II	in the membranes			()				
	1. Towards stroma	a side	2. Throug	hout the memb	rane					
	3. In the stroma la	rana towards l	umen si	ide						

www.sakshieducation.com

17.	If thylakoid membranes are exposed to light wave lengths beyond 680 nm, the										
	product formed is			()						
	1. O ₂ , ATP & NADPH ₂	2. ATP & NADPH ₂	3. Only O	4. Only	ATP						
18.	During light reactions the first substance that get excited by PS II is										
	1. Quinone	2. Cytochrome									
	3. Pheophytin	4. Plastocyanin									
19.	True statement regarding light reactions is/ are										
	I. Ultimate acceptor protons is ATP										
	II. Electron transports in the membrane										
	III. Protons translocate a	cross the membrane		G							
	IV. Electron movement towards PS I is uphill										
	1. I & II	2. II & III	3. III & IV	4. IV &	I						
20.	Assertion (A): Cyclic electron transport takes place in stroma lamellae (
	Reason(R): PS II and NADP reductase is absent in stroma lamellae										
	1) Both A and R are corre	ect and R is the correc	t explanation of	of A.							
	2) Both A and R are corre	ect but R is not the cor	rect explanation	on of A.							
	3) A is true, R is false										
	4) A is false, R is true.	.0									
21.	During sun light			()						
	1. Acidity increases in the	e lumen									
	2. Stroma gains protons										
	3. NADPH ₂ forms toward	ls lumen side									
	4. PQ accepts electrons from Quinone and protons from lumen										
22.	Primary criteria for chem	iosmotic hypothesis o	f ATP formati	on is ()						
	1. ADP	2. NADP 3. Pro	ton gradient	4. O ₂ release							
23.	False statement regardi	ng cyclic electron tra	nsport is	()						
	1. NADPH ₂ is produced 2. Source of electrons is w										
	3. Proton gradient would not develop 4. All the above										
24.	First stable substance for	med in C ₃ plants is		()						
20.21.22.23.	1. Glyceraldehyde 3 phos	phate	2) 3-phospho	glyceric acid							
	3. Dihydroxyacetone pho	sphate	4. Ribulose	oisphosphate							

1. Atmosphere 2. Malic acid 3. Pyruvic acid 4. OAA

True statement regarding C₄ plants is ()

I. CO₂ fixation takes place in both mesophyll and bundle sheath cells.

II. Light assimilatory power is produced in both mesophyll and bundle sheath cells.

III. Starch formation takes place in both mesophyll and bundle sheath cells.

IV.3 Carbon compounds are seen both mesophyll and bundle sheath cells.

1. I & II 2. II & III 3. I, II & IV 4. I, II. III & IV

www.sakshieducation.com **36.** The most abundant protein in the plant kingdom is 1. PEP carboxylase 2. RUBISCO 4. Triose phosphate isomerase 3. GAP dehydrogenase Product of RUBISCO activity as Oxygenase is 37.) 1) 2 molecules of Phosphoglyceric acid 2) One molecule of GAP & One DHAP molecule 3) One molecule of PGA and One molecule of Phosphoglycolic acid 4) Two molecules of phosphoglycolic acid True statement regarding Photorespiration **38.** 1. ATP is synthesized 2. CO₂ is released 4. NADPH₂ is synthesized 3. Starch forms Percentage of full sunlight at witch light saturation occurs is **39.** 1.60 2.50 3.30 **40.** Best suited plants in desert conditions are 4. C₄ and CAM 2. C_4 1. C_3

Photosynthesis---Key

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	1	2	3	1	3	4	2	3	3	4	2	1	1	3	4	4	3	2	1
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
1	3	4	2	4	2	1	3	1	3	4	1	4	2	3	2	3	2	4	3