Organic Chemistry

Some Basic Principles and Techniques

Sub Topic Name: General Introduction

1.	The first organic	compound prepare	d from inorganic co	mpounds was
	1) Urea	2) Methane	3) Acetic Acid	4) Ethyl Alcohol
2.	The bond energy	(in K Cal mol^{-1}) of	a C-C single bond is	s approximately
	1) 1	2) 10	3) 100	4) 1000
3.	Which of the follo	owing represents th	e given mode of hyb	oridization
	$sp^2 - sp^2 - sp - sp$	from left to right?		
	1) H3C - CH = CH	$H-CH_3$	$2) HC \equiv C - C \equiv C$	CH
	$3) H_2 C = CH - C \equiv$	СН	$4) H_2C = CH - CH$	I = CH
4.	Considering the s	state of hybridizatio	on of carbon atoms,	find out the molecule
among the following which is linear?				
	$1) CH_3 - C \equiv C - CR$	H_3	$2) CH_3 - CH = CH$	$T-CH_3$
	$3) H_2C = CH - CH$	$U_2 - C \equiv CH$	$4) CH_3 - CH_2 - CH_3$	$H_2 - CH_3$
5.	The compound in	n which all carbon a	ntoms use only sp ³ h	ybrid orbitals for
	bond formation i	S		
	1) CH ₃ CHO	2) CH ₃ COCH ₃	3) (CH ₃) ₃ COH	4) HCOOH
6.	Which among the	e following has high	nest melting point?	
	1) (CH ₃ CO) ₂ O	2) CH ₃ CN	3) CH ₃ CONH ₂	4) CH ₃ CoCl
7.	The correct order	r regarding the elec	tro negativity of hyl	orid orbitals of
	carbon is			
	$1) sp < sp^2 > sp^3$	$2) sp < sp^2 < sp^3$	$3) sp > sp^2 > sp^3$	$4) sp > sp^2 > sp^3$

8.	Among the follow	ving mixtures, dip	ole – dipole as the	major interaction is		
	present in					
	1) Benzene and et	hanol	2) Acetonitrile	and acetone		
	3) KCl and water		4) Benzene and	d carbon tetra chloride		
9.	Match the followi	ng				
	Column – I	Co	olumn – II (Hybrid	d, pure orbitals)		
	A) C_2H_6	p)	18, 12			
	B) C ₂ H ₄	q)	8, 0			
	C) C_2H_2	r)	6, 6	~		
	D) C_6H_6	s)	4, 6			
	1) A-s, B-q, C-p,	D-r	2) A-r, 1	B-p, C-q, D-s		
	3) A-q, B-r, C-s,	D-p	4) A-p,	B-s, C-q, D-r		
10.	A: p-hydroxyben	zoic acid has a lov	ver boiling point tl	han O-hydroxybenzoic		
	acid.					
	R: O-hydroxybenzoic acid has intra molecular hydrogen bonding.					
	1) Statement – 1 (A) and statement-2 (R) are true and statement – 2 is the correct					
	explanation fo	r statement $-1(A)$.				
	2) Statement – 1	(A) and statement-2	2 (R) are true and st	tatement – 2 is not the		
	correct explan	ation for statement	– 1(A).			
	3) Statement –1	(A) is true; stateme	nt-2 (R) is false.			
		(A) is false; stateme				
11.	The hydrogen bo	ond is strongest in	which one of the fo	ollowing		
	1) F – H F	2) O – H	O 3) S – H	F 4) F – H O		
12.	Which of the foll	owing compounds	shows evidence of	f the strongest hydrogen		
	bonding?					
	1) Propane – 1, 2,	3 – triol	2) Propane – 1	, 2 – diol		
	3) Propan – 1- ol		4) Propan − 2 -	– ol		
13.	Which one of the	following is the h	etero cyclic compo	ound?		
	1) Pyrene	2) Thiophene	3) Phenol	4) Anilene		

14. Which one of the following is a non-benzoid aromatic compound?

- 1) Anthracene
- 2) Tropolone

3) Aniline

4) Naphthalene

15. Which one is not correct for a homologous series?

- 1) All members have a general formula.
- 2) All members have same chemical properties.
- 3) All members have same physical properties.
- 4) All members have same functional group.

16. Match the following.

List – I

List - II

- 1) Benzene
- A) Aromatic (Bicyclic)
- 2) Naphthalene
- B) Aromatic (monocyclic)
- 3) Anthracene
- C) Alicyclic
- 4) Pyridine
- D) Heterocyclic
- 5) Cycloalkane
- E) Aromatic (Tricyclic)
- 1) 1-B, 2-A, 3-E, 4-D, 5-C
- 2) 1-A, 2-B, 3-C, 4-E, 5-D
- 3) 1-E, 2-D, 3-A, 4-C, 5-B
- 4) 1-D, 2-C, 3-B, 4-A, 5-E

17. Choose the non aromatic compound among the following.

1)

2)

3)

4)

18. Identify the compounds in which all bond lengths are equal.

1)

2)

3)

4)

19. Which of the following alkene has highest value of heat of hydrogenation?

2)

3)

4)

20. Which of the following is not a planar molecule?

1)
$$H_2C = C = CH_2$$

2)
$$H_2C = C = C = CH_2$$

3)
$$H_2C = C = 0$$

4)
$$NC - HC = CH - CN$$

KEY

Sub Topic Name: Nomenclature of Organic Compounds

1. The correct decreasing order of preference of functional groups during the IUPAC nomenclature of poly functional compounds is

- 1) –COOH, -SO₃H, -CONH₂, -CHO
- 2) -SO₃H, -COOH, -CONH₂, -CHO
- 3) –CHO, –COOH, -SO₃H, -CONH₂
- 4) -CONH₂, -CHO, -SO₃H, -COOH

2. Which of the following is a correct name according to IUPAC rules?

1) 2, 3-dimethyl hexane

2) 3-ethyl-2-methyl pentane

3) 3, 4-dimethyl pentane

4) 2-ethyl-2-methyl pentane

3. The IUPAC name of

- 1) 3-ethyl-4, 4-dimethyl heptanes
- 2) 1, 1-diethyl -2, 2-dimethyl pentane
- 3) 4, 4-dimethyl-5, 5-diethyl pentane
- 4) 5, 5-diethyl -4, 4-dimethyl pentane

4. The IUPAC name of

is

- 1) 2-ethyl-3-methyl butanoyl chloride
- 2) 2, 3-dimethyl pentanoyl chlroide
- 3) 3, 4-dimethyl pentanoyl chloride
- 4) 1-chloro-1-oxo-2, 3,-dimethyl pentane

5. The IUPAC name of the compound

is

- 1) 3, 3-dimethyl-1-1hydroxy cyclohexane
- 2) 1, 1-dimethyl-3-hydroxy cyclohexane
- 3) 3, 3-dimethyl-1-cyclo hexanol
- 4) 1, 1-diethyl -3 cyclo hexanol
- 6. The compound which contains all the four- 1° , 2° , 3° and 4° carbon atom is
 - 1) 2, 3-dimethyl pentane

- 2) 3-chloro-2, 3-dimethyl pentane
- 3) 2, 3, 4-trimethyl pentane
- 4) 3, 3-dimethyl pentane
- 7. The IUPAC name of the compound shown below is

- 1) 2-bromo-6-chloro cyclohex-1-ene
- 2) 6-bromo-2-chloro cyclohexene
- 2) 3-bromo-1-chloro cyclohexene
- 4) 1-bromo-3-chloro cyclohexene
- 8. The IUPAC name of the compound shown below is

- 1) 4-bromo-3-cyano phenol
- 2) 2-bromo-5-hydroxy benzonitrile
- 3) 2-cyano-4-hydroxy bromo benzene
- 4) 6-bromo-3-hydroxy benzonitrile
- 9. The IUPAC name of neopentane is
 - 1) 2, 2 dimethyl propane
- 2) 2-methyl propane

3) 2, 2-dimethyl butane

- 4) 2-methyl butane
- 10. The IUPAC name of C_6H_5COCl is
 - 1) Benzene acetic acid

- 2) Benzene chloro ketone
- 3) Benzene carbonyl chloride
- 4) Chloro Phenyl Ketone
- 11. Systematic name of Ph-CH₂- COOH is
 - 1) Benzene acetic acid

2) Phenyl Methyl carboxylic acid

- 3) 2-phenyl ethanoic acid
- 4) 2-phenyl methanoic acid

12. The IUPAC name of

- 1) N-cyclohexyl benzamide
- 2) N-cyclohexyl-N-phenyl methyl amide
- 3) N-phenyl-N-cyclohexyl methanamide
- 4) N-phenyl cyclo hexane carboxamide
- Which of the following compounds has isopropyl group? 13.
 - 1) 2, 2, 3, 3-tetramethyl pentane
- 2) 2, 2-dimethyl pentane
- 3) 2, 2, 3-trimethyl pentane
- 4) 2-methyl pentane
- **14.** Which one of the following is 5-butyl phenyl vinyl methane?

1)

3)

4)

- 15. The general molecular formula which represents the homologous series of alkanol is
 - 1) $C_n H_{2n+2} O$
- 2) $C_n H_{2n} O_2$ 3) $C_n H_{2n} O$
- 4) $C_n H_{2n+1} O$
- The general formula $C_n H_{2n} O_2$ could be for open chain **16.**
 - 1) Dialdehydes
- 2) Diketones
- 3) Carboxylic Acids 4) Diols
- The IUPAC name of the compound having the formulae $HC \equiv C CH = CH_2$ is **17.**
 - 1) 1-butyne-3-ene 2) but-1-yne-3-ene 3) 1-butene-3-yne 4) 3-butene-1-yne

 CH_3

18. Give the IUPAC name for $CH_3CH_2OCHCH_2CH_2CH_2Cl$

- 1) 2-ethoxy-5-chloro pentane
- 2) 1-chloro-4-ethoxy-4-methyl pentane
- 3) 1-chloro-4-ethoxy pentane
- 4) ethyl-1-chloropentyl ether

19. Name the compound given below is

$$H_3C$$
 CH_3
 CH_3

- 1) 4-ethyl-3-methyl octane
- 1) 4-etnyl-3-metnyl octane
- 3) 2, 3-diethyl heptane

- 2) 3-methyl-4-ethyl octane
- 4) 5-ethyl-6-methyl octane

20. Names of some compounds are given. Which one is not in IUPAC system?

1) $CH_3 - CH_2 - CH_2 - CH_3 - CH_2 - CH_3 = 3$ -methyl-4-ethyl heptane

2)
$$CH_3 - CH - CH - CH_3$$
: 3-methyl-2-butanol oh $CH_3 - CH_3$

- 3) $CH_3 CH_2 CH CH CH_3$: 2-ethyl-3-methyl bute-1-ene
- 4) $CH_3 C \equiv CH(CH_3)_2$: 4-methyl-2-pentyne

KEY

- 1) 2 2) 2 3) 1 4) 2 5) 3 6) 2 7) 3 8) 2 9) 1 10) 3
- 11) 3 12) 4 13) 4 14) 2 15) 1 16) 3 17) 3 18) 3 19) 1 20) 1

Sub Topic Name: Purification and Characterisation of Organic Compounds

1.	G	ne detection of Sulphur, the p	ourple colour is due to			
	the formation of					
	1) Na_4 [$Fe(CN)_5 NOS$]	2) $Na_3 [Fe(CN)_5 S$				
	3) $Na_2[Fe(CN)_5NOS]$	4) $Na_3[Fe(CN)_6]$				
2.	Cl – C ₂ H ₄ COOH is heated v	vith fuming HNO3 and then A	AgNO ₃ is added in the			
	test tube. The precipitate ob	tained is				
	1) AgCl, White coloured	2) AgCl, Yellow c	oloured			
	3) AgNO ₃ , AgCl White colour	red 4) $Cl - C_2H_4$ Coop	Ag, Yellow coloured			
3.	In Lassaigne's test, the orga	nic compound is fused with a	a piece of sodium			
	metal in oeder to	6.0				
	1) Increase the ionization of the compound					
	2) Increase the reactivity of the compound					
	3) Convert the covalent compound into a mixture of ionic compounds					
	4) Decrease the midpoint of the	he compound				
4.	Red coloured complex ion fo	ormed on adding FeCl ₃ to so	dium extract when N			
	and S both are present in organic compounds					
	1) $\left[Fe(CN)_6 \right]^{-4}$ 2) $\left[Fe(CN)_6 \right]^{-4}$	$[ENS]_3$ 3) $[Fe(CNS)_2]^+$	4) $Fe_4 \left[Fe(CN)_6 \right]_3$			
5.	A hydrocarbon on heating v	vith cupric oxide gives CO ₂ a	and a compound 'A'.			
	The compound 'A' gives on	a reaction with anhydrous C	uSO ₄ givescolour			
	1) White 2) Blue	3) Green	4) Orange			
6.	In Kjeldahl's method, the ni	itrogen of the organic compo	ound is converted into			
	during digestion					
	1) NH ₄ Cl 2) (NH ₄)	₂ SO ₄ 3) NH ₃	4) N ₂ gas			

7.	Turpentine oil is purified by						
	1) Steam distillar	tion	2) Fractional distillation				
	3) Azeotropic dis	stillation	4) Chemical me	4) Chemical method			
8.	Which of the fo	llowing can be u	sed as adsorbent in ad	sorption			
	chromatograph	y ?					
	1) Silica gel	2) Alumina	3) Cellulose	4) All of these			
9.	The sodium ext	ract of an organi	ic compound on acidif	ication with acetic acid			
	followed by add	lition of lead ace	tate solution gives a bl	ack precipitate. This			
	confirms the sol	lution gives a bla	nck precipitate. This co	onfirms the solution			
	gives a black pr	ecipitate. This co	onfirms the presence o	f in the organic			
	compound						
	1) N	2) P	3) S	4) Cl			
10.	In Dumas' meth	nod, the gas colle	cted in Schiff's nitro n	neter is			
	1) N ₂	2) NO	3) NH ₃	4) H ₂			
11.	Chromatograph	ny is used for the	separation of				
	1) Sugars	2) Plant Pign	nents 3) Amino acids	4) All of these			
12.	A mixture conta	nins four solid or	ganic compounds A, B	B, C and D. On heating			
	only 'C' changes from the solid to the vapour state. The compound 'C' can be						
	separated from	the rest by					
	1) Distillation	.0.	2) Sublimation				
	3) Fractional dis	tillation	4) Crystallisatio	on			
13.	How will you se	parate a mixtur	e of two miscible liquid	ds benzene and			
	chloroform?						
	1) Sublimation	2) Filtration	3) Fractional distillation	on 4) Crystallisation			
14.	In paper chrom	atography,					
	1) Moving phase	is liquid and stat	ionary phase is solid.				
	2) Moving phase	e is liquid and stat	ionary phase is liquid.				
	3) Moving phase	e is solid and stati	onary phase is solid.				
	4) Moving phase	e is solid and stati	onary phase is liquid.				

15.	The best and latest technique for isolation, purification and separation of			
	organic compound	l is		
	1) Crystallisation	2) Distillation 3) S	Sublimation 4) Cl	nromatography
16.	Separation of two	substances by fracti	ional crystallization	n is based upon their
	difference in			
	1) Density	2) Solubility	3) Boiling point	4) Crystalline nature
17.	Nitrogen present i	n an organic compo	und is estimated as	in Duma's
	method and as	_ in kjeldahl's meth	iod.	
	1) NH ₃ , N ₂ respecti	vely	2) N ₂ , NH ₃	respectively
	$3)(NH_4)_2 SO_4$, NH_4	Cl respectively	4) N ₂ , NCl ₃	respectively
18.	During the test of	halogens by silver n	itrate test, the sodi	um extract is first
	boiled with a few of	drops of HNO ₃ to		
	1) Decompose sodi	um halides present		
	2) Help in the preci	pitation of AgCl		
	3) Increase the cond	centration of NO_3^- ion	ns	
	4) Decompose Na ₂ S	S and NaCN if forme	d	
19.	A mixture of camp	ohor and benzoic aci	id can be separated	by
	1) Sublimation	12	2) Extraction with	a solvent
	3) Chemical method	d	4) Fractional crysta	allisation
20.	An organic compo	ound contains carbo	on, hydrogen and	oxygen. Its elemental
	analysis gives C,	38.71% and H, 9	9.67%. The empir	rical formula of the
	compound is			
	1) CH ₄ O	2) CH ₂ O	3) CH ₃ O	4) CHO
21.	0.2 g of an organi	c compound on con	nplete combustion	gives 0.18 g of water.
	The percentage of	hydrogen in it is:		
	1) 10	2) 20	3) 30	4) 15

- 22. If 0.2 g of an organic compound containing carbon, hydrogen and oxygen on combustion yielded 0.147 g of CO_2 and 0.12 g of H_2O . What will be the content of oxygen in the substance?
 - 1) 73.29%
- 2) 78.45%
- 3) 83.23%
- 4) 89.50%
- 23. Four hypothetical binary mixtures are given below with their boiling points. Which of them can be separated by simple distillation?
 - A) $A(b.p. 78^{\circ}C) + B(b.p. 85^{\circ}C)$
- B) $A(b.p. 78^{\circ}C) + B(b.p. 90^{\circ}C)$
- C) $A(b.p. 78^{\circ}C) + C(b.p. 20^{\circ}C)$
- D) $A(b.p. 78^{\circ}C) + D(b.p. 130^{\circ}C)$

- 1) A and B only
- 2) C only
- 3) C and D only 4) A, B and D only

24. List – I

List – II

(Compound)

(Formula)

I) Prussian blue

 $Na_2[Fe(CN)_5NO]$

II) Ferric thiocyanate

ii) $Na_4 \lceil Fe(CN)_5 NOS \rceil$

III) Sodium nitroprusside

- iii) $Fe_4 \left[Fe(CN)_6 \right]_3$
- IV) Violet colour compound formula in
- iv) $\left[Fe(CNS)_3 \right]$

the test for sulphur

- I II III IV
- 1) iii iv i ii
- 2) iii iv ii i
- 3) iii i ii iv
- 4) i iv ii iii
- 25. 0.157 g of an organic compound in sulphur estimation gave 0.4813 g of barium sulphate. The percentage of sulphur in the compound is
 - 1) 17.29%
- 2) 21.05%
- 3) 42.28%
- 4) 42.1%

26.	In a c	compo	und of	С, Н	and N	atoms	are pr	esent i	n 9: 1	: 3: 5 b	y weig	hts. If
	molec	ular v	weight	of th	e com	pound	is 10	8, the	en mo	lecular	form	ıla of
	comp	ound is	S									
	$1) C_2 F$	H_6N_2		2) C ₃ F	I_4N		3) C ₆ H	I_8N_2		4) C ₉ H ₁	$_{2}N_{2}$	
27.	The a	mmon	ia evol	ved fr	om the	treatn	nent of	f 0.30 g	g of an	organi	c com	pound
	for es	timatio	on of n	itroger	was p	assed i	n 100	mL of	0.1 M	sulphu	ric aci	d. The
	excess	of aci	d requ	ired 20	ml of	0.5 M s	sodium	hydro	xide s	olution	for cor	nplete
	neutra	alizatio	on. The	organ	ic com	pound	is					
	1) Ure	ea		2) Ber	ızamide	e		3) Ace	tamide	4	4) Thio	urea
28.	An or	ganic (compo	und ha	ving m	olecula	r mas	s 60 is	found	to conta	in C =	20%,
	H=6.6	57% ar	nd N =	46.67%	% while	e rest is	oxyge	en. On	heatin	g it give	es NH ₃	along
	with a	a solid	residu	e. The	solid r	esidue	gives v	iolet c	olour v	with alk	aline c	opper
	sulph	ate sol	ution. [The co	npoun	d is						
	1) CH	₃ CH ₂ C	ONH_2	2) CH	3CONF	H_2 3) (1	$NH_2)_2C$	CO		4) CH ₃ I	NCO	
29.	29.5 n	ng of a	n orga	nic co	mpoun	d conta	aining	nitrog	en was	s digeste	ed acco	ording
	to kje	ldhal's	meth	od and	the ev	olved a	ammo	nia was	s abso	rbed in	20 ml	of 0.1
	МН	Cl solu	ition. '	The ex	cess o	f the a	acid re	equired	l 15 n	nl of 0.	1 M	NaOH
	soluti	on for	comp	olete n	eutrali	ization.	The	percei	ntage	of nitro	ogen i	n the
	comp	ound is	S									
	1) 47.	4	6	<i>J</i>	2) 23.7	7	3) 29	.5		4) 59.0		
		1	+									
	1) 1	110				KEY						
	1	7										
	1) 1	2) 1	3) 3	4) 2	5) 2	6) 2	7) 1	8) 4	9) 3	10) 1		
	11) 4	12) 2	13) 3	14) 2	15) 4	16) 2	17) 2	18) 4	19) 3	20) 3		
	21) 1	22) 1	23) 3	24) 1	25) 4	26) 3	27) 1	28) 2	29) 2			

4. Sub Topic Name: Isomerism

1.	Compounds having same number and kind of atoms but different						
	arrangement of	f atoms in their mole	cules are called	ules are called			
	1) Isotopes	2) Polymers	3) Isomers	4) allotropes			
2.	Keto-enol tautomerism is not observed in						
	1) $C_6H_5COC_6H_5$	i	2) C ₆ H ₅ COCH=	=CH ₂			
	3) C ₆ H ₅ COCH ₂	COCH ₃	4) CH ₃ COCH ₂ C	COCH ₃			
3.	C ₇ H ₈ O shows h	ow many isomers?					
	1) 2	2) 3	3) 4	4) 5			
4.	Which one of tl	ne following will show	w optical isomeris	m?			
	1) CH ₂ OH – CC	ЮН	 2) (CH₃)₂ CH - COOH 4) (CH₃)₂ C(Cl)COOH 				
	3) CH ₃ CH (OH)	СООН	4) $(CH_3)_2 C(Cl)COOH$				
5.	Number of a cy	clic isomers represe	ted by molecular formula C ₄ H ₁₀ O is				
	1) 4	2) 5	3) 6	4) 7			
6.	The isomerism	that arises due to res	stricted bond rotat	tion is			
	1) Position isom	erism	2) Metamerism				
	3) Geometrical i	somerism	4) Functional is	somerism			
7.	Identify the cor	npound that exhibits	s tautomerism				
	1) 2-butene	2) Lactic acid	3) Phenol	4) 2-pentanone			
8.	cis-2-butene an	d trans-2-butene are	:				
	1) Optical isomers		2) Conformational isomers				
	3) Structural iso	mers	4) Configurational isomers				
9.	Geometrical iso	omerism is not exhibi	ited by				
	1) 2-Butene		2) Propene				
	3) 3-methyl pent	t-2-ene	4) 2-methyl but-2-ene				

- 10. The number of Stereoisomer's possible for a compound of the molecular formula CH₃-CH=CH-CH (OH)-Me is
 - 1) 2

2) 3

3) 4

- 4) 6
- 11. The number of optical isomers of CH₃CH (OH) CH (OH) CHO is
 - 1) 2

2) 3

3) 4

- 4) 6
- 12. A similarity between optical and geometrical isomerism is that
 - 1) Each forms equal number of isomers for a given compound
 - 2) If in a compound one is present then so is the other
 - 3) Both are included in stereo isomerism
 - 4) They have no similarity
- 13. Which one of the following will have a mesoisomer also?
 - 1) 2-chloro butane

2) 2, 3-dichloro butane

3) 2, 3-dichloro pentane

- 4) 2-Hydropropanoic acid
- 14. Number of structural isomers for C_0H_{14} is
 - 1) 3

2) 4

3) 5

4) 6

15. The two structures written below represent

1) Pair of diastereomers

2) Pair of enantiomers

3) Same molecule

- 4) Both are optically inactive
- 16. The absolute configuration of

1) S, R

- 2) S, S
- 3) R, R
- 4) R, S

17. Which of the following cannot exist in 'syn' and 'anti' forms?

1) C_6H_5 -N=N-OH

2) C_6H_5 -N=N- C_6H_5

3) C_6H_5 -CH=N-OH

4) $(C_6H_5)_2 C = N - OH$

18. Match the following.

List – I

List - II

- 1) Pair of chain isomers A) $CH_3COCH_2COO\ C_2H_5$; $CH_3C(OH) = CHCOO\ C_2H_5$
- 2) A pair of position isomers
- B) CH₃CH₂ CH₂CHO; CH₃COCH₂CH₃
- 3) A pair of functional isomers
- C) $CH_3CH_2 C = CH$; $CH_3C = CCH_3$
- 4) A pair of tautomers
- D) CH₃CH₂ CH₂CH₃; CH₃-CH(CH₃)-CH₃
- 1) 1-A, 2-B, 3-C, 4-D

2) 1-D, 2-C, 3-B, 4-A

3)1-B, 2-D, 3-A, 4-C

4) 1-C, 2-A, 3-D, 4-B

19. Which of the following is correctly matched?

Compound

Number of geometrical isomers

- 1) $CH_3 CH = CH CH = CH C_2H_5$
- 4

2) $CH_3 - (CH = CH)_4 - CH_3$

2

3) $H_2C = CH - CH = CH_2$

10

4) CH_3 (-CH = CH)₅ - CH₃

- 5
- 20. Increasing order of stability among the three main conformations (i.e., eclipse, anti, gauche) of 2-fluoro ethanol is
 - 1) Eclipse, gauche, anti

2) Gauche, eclipse, anti

3) Eclipse, anti, gauche

- 4) Anti, gauche, eclipse
- 21. The correct name of the following structure is

$$H$$
 $C = C$
 H
 $C = C$
 CH_3

- 1) (E), (E) 2, 4-hexadiene
- 2) (Z), (Z)-3, 5-hexadiene
- 3) (E), (Z)-3, 5-hexadiene
- 4) (Z), (E) 2, 4, hexadiene

22. The compound whose stereo chemical formula is written below exhibits 'x' geometrical isomers and 'y' optical isomers

$$H_3C$$
 $C = C$
 $CH_2 - C$
 CH_3
 H

The values of 'x' and 'y' are

- 1) 4 and 4
- 2) 2 and 2
- 3) 2 and 4
- 4) 4 and 2

23. Which of the following cycloalkanes involves maximum torsional strain?

- 1) Cyclopropane
- 2) Cyclobutane
- 3) Cyclopentane
- 4) Cyclohexane

24. Dihedral angle in staggered and eclipsed conformations are

- 1) 60° and 0°
- 2) 0° and 60°
- 3) 60°, 120°
- 4) 120°, 60°

25. The energy barrier between eclipsed and staggered forms is

- 1) 6.7 kJ/mol
- 2) 12.55 kJ/mol
- 3) 29.7 kJ/mol
- 4) 44 kJ/mol

26. Which of the following compounds cannot show tautomerism?

27. The IUPAC name of the compounds

- 1) (2E, 4E, 6Z)-octa-2, 4, 6-triene
- 2) (2E, 4E, 6E)-octa-2, 4, 6-triene
- 3) (2Z, 4E, 6Z)-octa-2, 4, 6-triene
- 4) (2Z, 4Z, 6Z)-octa-2, 4, 6-triene

KEY

5. SUB TOPIC NAME: MECHANISM OF ORGANIC REACTIONS

1	Polarication	of electro	ns in acrolein	mav be written as

$$\begin{array}{c}
\delta^{+} \\
1
\end{array}$$

$$H_{2}C = CH - CH = 0$$

$$H_2C = CH - CH = O$$

$$\begin{array}{ccc}
\delta^{-} & \delta^{+} \\
3) & H_{2}C = CH - CH = 0
\end{array}$$

2)
$$H_{2}C = CH - CH = O$$

$$H_{2}C = CH - CH = O$$

$$H_{2}C = CH - CH = O$$

The stablest free radical among the following is 2.

$$_{4)}$$
 C_6H_5 - CH - CH_3

3. Which of the following ions is most stable?

4. The strongest acid amongst the following compound is

1) HCOOH

2) CH₃COOH

3) CH₃ CH₂ CH (Cl) COOH

4) Cl CH₂ CH₂ CH₂ COOH

Which of the following has the highest nucleophilicity? 5.

3)
$$CH_{3}^{-}$$

4)
$$NH_{2}^{-}$$

Which of the following has the most acidic hydrogen? **6.**

1) 3-Hexanone

2) 2, 4-Hexanedione

3) 2, 5-Hexanedione

4) 2, 3-Hexanedione

7. Due to the presence of an unpaired electron, free radicals are

1) Chemically reactive

2) Chemically inactive

3) Anions

4) Cations

The correct stability order of the following resonance structures is 8.

I)
$$H_2C = N = N$$

II)
$$H_{2} \stackrel{+}{C} - N = \stackrel{-}{N}$$

III)
$$H_2 \stackrel{-}{C} - \stackrel{+}{N} \equiv N$$

I)
$$H_2C = N = N$$
 II) $H_2C - N = N$ III) $H_2C - N = N$ IV) $H_2C - N = N$

1)
$$I > II > IV > III$$

$$2) I > III > II > IV$$

3)
$$II > I > III > IV$$

1)
$$I > II > IV > III$$
 2) $I > III > II > IV$ 3) $II > I > III > IV$ 4) $III > I > IV > II$

9.	. Which one of the following carbanions is the least stable?						
	1) $\left(CH_3\right)_3 \overline{C}$	2) CH_3^-	3) $HC \equiv \overline{C}$	4) $CH_3CH_2^-$			
10.	Which of the follo	wing intermediat	es have the complete	e octet around the			
	carbon atom?						
	1) Carbonium ion	2) Carbanion	3) Free radical	4) Carbene			
11.	Hyper conjugation	n involves overlap	o of the following orl	oitals			
	 σ−σ 	2) $\sigma - p$	3) p – p	4) $\pi - \pi$			
12.	The basicity of an	iline is less than t	hat of cyclohexylam	ine. This is due to			
	1) –R effect of –NI	H_2 group	2) –I effect of –N	H ₂ group			
	3) +R effect of –NI	H ₂ group	4) Hyper conjuga	tion effect			
13.	The increasing or	der of stability of	the following free ra	dicals is			
	1) $(CH_3)_2 \dot{C} H < (CH_3)_3 \dot{C} < (C_6H_5)_2 \dot{C} H < (C_6H_5)_3 \dot{C}$						
	2) $(C_6H_5)_3 \dot{C} < (C_6H_5)_3 \dot{C}$						
	$3) \left(C_6 H_5\right)_2 \overset{\bullet}{C} H < \left(C_6 H_5\right)_2 \overset{\bullet}{C} H = 0$						
	$4) \left(CH_3\right)_2 \overset{\bullet}{C}H < \left(CH_3\right)_2 \overset{\bullet}{C}H = 0$	$(H_3)_3 \dot{C} < (C_6 H_5)_3 \dot{C}$	$<\left(C_6H_5\right)_2\dot{C}H$				
14.	Which of the follo	wing hydrocarbo	ns has the lowest dip	oole moment?			
	H_3C CH_3						
	1) H		$2) CH_3C \equiv C - CH$	I_3			
	3) $CH_3CH_2C \equiv CH$		$4) H_2C = CH - C$	$\equiv CH$			
15.	The arrangement	$\mathbf{of}(CH_3)_3 C - , (CH_3)_3 C - $	$(H_3)_2 CH - , CH_3 CH_2 -$	when attached a			
	benzene or an uns	aturated group ir	n increasing order of	inductive effect is			
	$1) \left(CH_3\right)_3 C - < CH_3 C $	$(V_3)_2 CH - < CH_3 CH_2$	$_{2}-2) CH_{3}CH_{2}-<(C$	$(CH_3)_2 CH - < (CH_3)_3 C$			
	$3) \left(CH_3\right)_2 CH - < CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3$	$(CH_3)_3 C - < CH_3 CH_2$	$(CH_3)_3 C - < C$	$H_3CH_2 - < (CH_3)_2 CH$			

16.	Which of the following statements regarding the resonance energy of benzene						
	is correct?						
	1) The energy required to break the C-H bond in benzene						
	2) The energy required to break the C-C	bond in benzene					
	3) The energy is a measure of stability of	f benzene					
	4) The energy required to convert						
17.	Hyper conjugation is most useful for s	stabilizing which of the following					
	carbonations?						
	1) Tert-Butyl 2) Neo-pentyl	3) Isopropyl 4) Ethyl					
18.	Which is the decreasing order of acidi	ity in HCOOH (I), CH ₃ COOH (II),					
	CH ₃ CH ₂ COOH (III) and C ₆ H ₅ COOH	[(IV)?					
	1) $I > II > III > IV$ 2) $IV > III > II > I$	3) $IV > I > II > III$ 4) $I > IV > II > III$					
19.	In the following compounds phenol (I), P-cresol (II), m-nitro phenol (III) and					
	P-nitro phenol (IV), the order of acidi	ty is					
	1) III > IV > I > II 2) I > IV > III > II	3) II > I > III > IV 4) IV > III > I > II					
20.	Inductive effect involves						
	1) Displacement of σ - electrons	2) Delocalization of π - electrons					
	3) Delocalization of σ - electrons	4) Displacement of π - electrons					
21.	In the following compounds, anisole (I), benzene (II) and nitrobenzene (III),					
	the case of reaction with electrophiles	is					
	1) II > III > I 2) III > II > I	3) II > I > III 4) I > III > III					
22.	Hyper conjugation phenomenon is po	ssible in					
	1) $H_2C = CH_2$	2) CH3CH2 - CH = CH2					
	$3) C_6H_5CH = CH_2$	4) $(CH_3)_3 C - CH = CH_2$					

23. Which of the following contains three pairs of electron?

1) Carbocation 2) Carbanion 3) Free radical

4) Zwitterion

24. Which of the following is an electrophonic reagent?

- 1) H₂O
- 2) OH-
- 3) NO_{2}^{+}
- 4) *CN*⁻

25. The following reaction is an example of

- 1) Nucleophilic substitution
- 2) Electrophilic substitution

3) Electrophilic addition

4) Nucleophilic addition

26. The following reaction is
$$C_2H_5Br + KOH \rightarrow C_2H_5OH + KBr$$

- 1) Electrophilic substitution
- 2) Elimination
- 3) Nucleophilic substitution
- 4) Addition

27. The following reaction is
$$H_2C = CH_2 + Br_2 \rightarrow H_2C - CH_2$$

1) Electrophilic addition

2) Electrophilic substitution

3) Nucleophilic addition

4) Nucleophilic substitution

Elimination reaction occurs with the formation of 28.

1) One sigma bond

- 2) One pi bond
- 3) One sigma and one pi bond
- 4) Two sigma and one pi bond

29. Heterolytic fission of a covalent bond can form

1) Free radical

2) Both carbocation and carbanion

3) Only carbocation

4) Only carbanion

30. The kind of delocalization involving sigma bond orbitals is

1) Hybridization 2) Conformation 3) Hyper conjugation 4) Resolution

31. Least active electrophile is

1)
$$CH_3 - \overset{o}{C} - OCH_3$$
 2) $CH_3 - \overset{o}{C} - Cl$ 3) $CH_3 - \overset{o}{C} - NMe_2$ 4) $CH_3 - \overset{o}{C} - SCH_3$

3)
$$CH_3 - \overset{o}{C} - NMe_2$$

4)
$$CH_3 - \overset{o}{C} - SCH_3$$

32.	2. Stability of alkyl carbocations can be explained by					
	A) Inductive effe	ct	B) Resonance			
	C) Hyper conjug	ations	D) Electromeric eff	ect		
	1) A and B	2) A and D	3) C and D	4) A and C		
33.	Which of the foll	owing is corre	ct regarding the –I ef	fect of the substituent's?		
	1) $-NR_2 < -OR <$	$-F 2) -NR_2 > -C$	$OR < -F 3$) $-NR_2 < -O$	$R > -F 4) -NR_2 > -OR > -F$		
34.	Which statement	is correct for	inductive effect?			
	1) It is a permanen	nt effect				
	2) It is the propert	y of single bon	d			
	3) It causes perma	nent polarization	on in the molecule			
	4) All are correct		×			
35.	Which statement	is correct for	electrometric effect?			
	1) It is a temporar	y effect	.00			
	2) It is the propert	$xy ext{ of } \pi ext{-bond}$				
	3) It takes place in	n the presence of	of attacking reagent			
	4) All are correct		O			
36.	Which one of the	following seri	es contains electroph	iles only?		
	1) H ₂ O, SO ₃ , H ₃ O	0 ⁺ 2) NH ₃ , H ₂ C), AlCl ₃ 3) AlCl ₃ , SO ₃ ,	⁺ _{NO₂} 4) H ₂ O, ⁺ _{Cl} , NH ₃		
37.	Which of these s	pecies is/are el	ectrophiles?			
	1): CCl ₂	2) AlCl ₃	3) SO ₃	4) All of these		
38.	The formation of	f cyanohydrins	from a ketone is an	example of		
	1) Electrophilic ac	ddition	2) Nucleophil	ic addition		
	3) Nucleophilic su	ubstitution	4) Electrophil	ic substitution		
39.	The stability of the	he compounds				
	\triangle					
	(1) (2)	(3)	(4)			
	1) 1 > 3 > 2 > 4	2) 4 > 3 > 1	> 2 3) 4 > 1 > 3 >	2 4) $2 > 3 > 4 > 1$		

40. Write the following in decreasing order towards electrophilic substitution reaction

1) I > II > III > IV 2) IV > I > II > III 3) II > III > IV > I 4) II > I > IV > III

KEY