# Hydrogen & Its Compounds

## LEVEL-I

### **Occurrence, Isotopes, Preparation, Properties, Uses of Hydrogen**

4) Nitrogen

- 1. The element which has no suitable position in the periodic table is
  - 1) Hydrogen 2) Oxygen 3) Carbon

#### 2. Hydrogen differs from alkali metals in

- 1) Nature of oxide 2) Valency Electrons
- 3) The formation of cation 4) Electropositive Nature

#### 3. Correct statement among the following is

- 1) Oxide of hydrogen is basic
- 2) Hydrogen exhibits flame colouration like alkali metals
- 3) Hydrogen has high I.P value like halogens
- 4) Electrolysis of fused saline hydride gives hydrogen from cathode

## 4. Hydrogen mainly resembles halogens in the property

- 1) It contains one electron only
- 2) It is short of one electron to get inert gas configuration
- 3) It is a diatomic gas like halogens
- 4) It exhibits colour like halogens

## 5. Hydrogen mainly resembles alkali metals in the property

- 1) It forms H+ (aq) ion2) Its I.P is similar to alkali metals
- 3) It is electropositive 4) It has  $ns^2$  configuration
- 6. Hydrogen is available in Free State in
  - 1) Clay2) Coal3) Volcanic gases4) Petroleum

| 7.  | The Ionization energy of hydrogen is                               |                                                                                      |  |  |  |
|-----|--------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|
|     | 1) Greater than inert gases                                        | 2) Nearer to inert gases                                                             |  |  |  |
|     | 3) Nearer to Halogens                                              | 4) Nearer to alkaline earth metals                                                   |  |  |  |
| 8.  | The ionization energy of hydrogen is                               |                                                                                      |  |  |  |
|     | 1) 1312 KJ mole <sup>-1</sup> 2) 520 KJ mole <sup>-</sup>          | 1 3) 495 KJ mol <sup><math>-1</math></sup> 4) 1681 KJ mol <sup><math>-1</math></sup> |  |  |  |
| 9.  | The element without neutron is                                     | ÇÖ.                                                                                  |  |  |  |
|     | 1) H 2) C                                                          | 3) He 4) Na                                                                          |  |  |  |
| 10. | ${}_{1}^{1}H$ , ${}_{1}^{2}H$ and ${}_{1}^{3}H$ differ in their    |                                                                                      |  |  |  |
|     | 1) Atomic radius                                                   | 2) Position in the periodic table                                                    |  |  |  |
|     | 3) Chemical properties                                             | 4) Physical properties                                                               |  |  |  |
| 11. | ${}^{1}_{1}H$ , ${}^{2}_{1}H$ and ${}^{3}_{1}H$ will have the same |                                                                                      |  |  |  |
|     | 1) Mass number 2) Chemi                                            | cal reactivity                                                                       |  |  |  |
|     | 3) Electron configuration 4) Nuclea                                | ir radius                                                                            |  |  |  |
| 12. | The radioactive isotope of hydrogen                                | is                                                                                   |  |  |  |
|     | 1) ${}_{1}^{1}H$ 2) ${}_{1}^{2}H$                                  | 3) ${}_{1}^{3}H$ 4) ${}_{1}^{0}H$                                                    |  |  |  |
| 13. | Among the radioactive elements triti                               | um is used as better tracer because                                                  |  |  |  |
|     | 1) It is cheaply available                                         | 2) It emits low energy b-rays                                                        |  |  |  |
|     | 3) It does not emit $\gamma$ –rays                                 | 4) All the above                                                                     |  |  |  |
| 14. | Which property is same for both nor                                | mal hydrogen and deuterium?                                                          |  |  |  |
|     | 1) Boiling point 2) Freezing point                                 | 3) Bond energy 4) Bond length                                                        |  |  |  |
| 15. | Which property is lower for deuterin                               | ım than hydrogen?                                                                    |  |  |  |
|     | 1) Latent heat of vaporization                                     | 2) Latent heat of fusion                                                             |  |  |  |
|     | 3) Reactivity                                                      | 4) Atomic weight                                                                     |  |  |  |

| 16.                                           | 16. The number of possible hydrogen molecules formed from its isotopes is                                                                                                                                   |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                 |  |  |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                               | 1) 3                                                                                                                                                                                                        | 2) 6                                                                                                                                                                                               | 3) 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4) 12                                                                                                                                                                                           |  |  |
| 17.                                           | Adsorption of hy                                                                                                                                                                                            | drogen by palladiun                                                                                                                                                                                | n is known as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |  |  |
|                                               | 1) Reduction                                                                                                                                                                                                | 2) Hydrogenation                                                                                                                                                                                   | 3) Occlusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4) Dehydrogenation                                                                                                                                                                              |  |  |
| 18.                                           | The total number                                                                                                                                                                                            | r of fundamental par                                                                                                                                                                               | rticles in tritium ator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m is                                                                                                                                                                                            |  |  |
|                                               | 1) 4                                                                                                                                                                                                        | 2) 3                                                                                                                                                                                               | 3) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4) 1                                                                                                                                                                                            |  |  |
| 19.                                           | The catalyst used                                                                                                                                                                                           | l in Fisher-Tropsch                                                                                                                                                                                | process is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                 |  |  |
|                                               | 1) Iron oxide                                                                                                                                                                                               | 2) Cobalt                                                                                                                                                                                          | 3) Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4) ZnO.CrO3                                                                                                                                                                                     |  |  |
| 20.                                           | The catalyst in th                                                                                                                                                                                          | e hydrogenation of                                                                                                                                                                                 | oils is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\mathcal{A}$                                                                                                                                                                                   |  |  |
|                                               | 1) Pt                                                                                                                                                                                                       | 2) Ni                                                                                                                                                                                              | 3) Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4) Co                                                                                                                                                                                           |  |  |
| 21.                                           | Hydrogen is used                                                                                                                                                                                            | l as reducing agent i                                                                                                                                                                              | n metallurgy for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | reduction of oxide                                                                                                                                                                              |  |  |
|                                               | 1) Zinc                                                                                                                                                                                                     | 2) Iron                                                                                                                                                                                            | 3) Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4) Aluminium                                                                                                                                                                                    |  |  |
|                                               | 22. When 'n' moles of CO combines with $(2n+1)$ moles of H <sub>2</sub> , the hydrocarbon                                                                                                                   |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                 |  |  |
| 22.                                           | When 'n' moles                                                                                                                                                                                              | of CO combines w                                                                                                                                                                                   | ith (2n+1) moles of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>2</sup> H <sub>2</sub> , the hydrocarbon                                                                                                                                                   |  |  |
| 22.                                           | When 'n' moles<br>formed is                                                                                                                                                                                 | of CO combines w                                                                                                                                                                                   | ith (2n+1) moles of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>2</sup> H <sub>2</sub> , the hydrocarbon                                                                                                                                                   |  |  |
| 22.                                           | When 'n' molesformed is1) Alkene                                                                                                                                                                            | of CO combines w<br>2) Alkane                                                                                                                                                                      | ith (2n+1) moles of<br>3) Alkyne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul><li>4) None</li></ul>                                                                                                                                                                       |  |  |
| 22.<br>23.                                    | When 'n' moles<br>formed is<br>1) Alkene<br>Bond length is m                                                                                                                                                | of CO combines w<br>2) Alkane<br>ore in                                                                                                                                                            | ith (2n+1) moles of<br>3) Alkyne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul><li>4) None</li></ul>                                                                                                                                                                       |  |  |
| 22.<br>23.                                    | When 'n' moles<br>formed is<br>1) Alkene<br>Bond length is m<br>1) H–H                                                                                                                                      | of CO combines w<br>2) Alkane<br>ore in<br>2) D-D                                                                                                                                                  | <b>ith (2n+1) moles of</b><br>3) Alkyne<br>3) T–T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li><b>H<sub>2</sub>, the hydrocarbon</b></li> <li>4) None</li> <li>4) Same in all</li> </ul>                                                                                              |  |  |
| <ul><li>22.</li><li>23.</li><li>24.</li></ul> | When 'n' moles<br>formed is<br>1) Alkene<br>Bond length is m<br>1) H–H<br>(A): Tritium is us                                                                                                                | of CO combines w<br>2) Alkane<br>ore in<br>2) D–D<br>sed as tracer elemen                                                                                                                          | <ul> <li>ith (2n+1) moles of</li> <li>3) Alkyne</li> <li>3) T–T</li> <li>t in preference to det</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>4) None</li> <li>4) Same in all</li> <li>uterium.</li> </ul>                                                                                                                           |  |  |
| <ul><li>22.</li><li>23.</li><li>24.</li></ul> | When 'n' moles<br>formed is<br>1) Alkene<br>Bond length is m<br>1) H–H<br>(A): Tritium is us<br>(R): Tritium is n                                                                                           | of CO combines w<br>2) Alkane<br>ore in<br>2) D–D<br>sed as tracer element<br>on - toxic and it emit                                                                                               | <ul> <li>ith (2n+1) moles of</li> <li>3) Alkyne</li> <li>3) T–T</li> <li>t in preference to det</li> <li>t is low energy beta rational statements and the statement is a statement of the statement is a statement of the statement</li></ul> | <ul> <li>4) None</li> <li>4) Same in all</li> <li>uterium.</li> <li>diation.</li> </ul>                                                                                                         |  |  |
| 22.<br>23.<br>24.                             | When 'n' moles formed is 1) Alkene Bond length is m 1) H–H (A): Tritium is us (R): Tritium is not                                                                                                           | of CO combines w<br>2) Alkane<br>ore in<br>2) D-D<br>sed as tracer elemen<br>on - toxic and it emit<br>ver is                                                                                      | <ul> <li>ith (2n+1) moles of</li> <li>3) Alkyne</li> <li>3) T–T</li> <li>t in preference to det</li> <li>t is low energy beta ratio</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>4) None</li> <li>4) Same in all</li> <li>uterium.</li> <li>diation.</li> </ul>                                                                                                         |  |  |
| 22.<br>23.<br>24.                             | When 'n' moles<br>formed is<br>1) Alkene<br>Bond length is m<br>1) H–H<br>(A): Tritium is us<br>(R): Tritium is n<br>The correct answ<br>1) Both (A) and (F                                                 | of CO combines w<br>2) Alkane<br>ore in<br>2) D–D<br>sed as tracer element<br>on - toxic and it emit<br>ver is<br>R) are true and (R) is                                                           | <ul> <li>ith (2n+1) moles of</li> <li>3) Alkyne</li> <li>3) T–T</li> <li>t in preference to det</li> <li>ts low energy beta ration</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li><b>H<sub>2</sub>, the hydrocarbon</b></li> <li>4) None</li> <li>4) Same in all</li> <li>uterium.</li> <li>diation.</li> </ul>                                                          |  |  |
| 22.<br>23.<br>24.                             | When 'n' moles<br>formed is<br>1) Alkene<br>Bond length is m<br>1) H–H<br>(A): Tritium is us<br>(R): Tritium is no<br>The correct answ<br>1) Both (A) and (F                                                | of CO combines w<br>2) Alkane<br>ore in<br>2) D-D<br>sed as tracer element<br>on - toxic and it emit<br>ver is<br>R) are true and (R) is<br>R) are true and (R) is                                 | <ul> <li>ith (2n+1) moles of</li> <li>3) Alkyne</li> <li>3) T–T</li> <li>t in preference to det</li> <li>ts low energy beta range</li> <li>the correct explanation</li> <li>not the correct explanation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li><b>H<sub>2</sub>, the hydrocarbon</b></li> <li>4) None</li> <li>4) Same in all</li> <li><b>uterium.</b></li> <li><b>diation.</b></li> <li>n of (A).</li> <li>ation of (A).</li> </ul>  |  |  |
| 22.<br>23.<br>24.                             | When 'n' moles<br>formed is<br>1) Alkene<br>Bond length is m<br>1) H–H<br>(A): Tritium is m<br>(R): Tritium is m<br>The correct answ<br>1) Both (A) and (R<br>2) Both (A) and (R<br>3) (A) is true but (    | of CO combines w<br>2) Alkane<br>ore in<br>2) D-D<br>sed as tracer element<br>on - toxic and it emit<br>ver is<br>R) are true and (R) is<br>R) are true and (R) is<br>R) are true and (R) is       | <ul> <li>ith (2n+1) moles of</li> <li>3) Alkyne</li> <li>3) T–T</li> <li>t in preference to det</li> <li>ts low energy beta rational the correct explanation</li> <li>the correct explanation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li><b>H<sub>2</sub>, the hydrocarbon</b></li> <li>4) None</li> <li>4) Same in all</li> <li><b>uterium.</b></li> <li><b>idiation.</b></li> <li>n of (A).</li> <li>ation of (A).</li> </ul> |  |  |
| 22.<br>23.<br>24.                             | When 'n' moles<br>formed is<br>1) Alkene<br>Bond length is m<br>1) H–H<br>(A): Tritium is us<br>(R): Tritium is n<br>The correct answ<br>1) Both (A) and (R<br>2) Both (A) and (R<br>3) (A) is true but (A) | of CO combines w<br>2) Alkane<br>ore in<br>2) D-D<br>sed as tracer element<br>on - toxic and it emit<br>ver is<br>R) are true and (R) is<br>R) are true and (R) is<br>R) is false.<br>(R) is true. | <ul> <li>ith (2n+1) moles of</li> <li>3) Alkyne</li> <li>3) T–T</li> <li>t in preference to deal</li> <li>ts low energy beta rank</li> <li>the correct explanation</li> <li>not the correct explanation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li><b>H<sub>2</sub>, the hydrocarbon</b></li> <li>4) None</li> <li>4) Same in all</li> <li><b>uterium.</b></li> <li><b>diation.</b></li> <li>n of (A).</li> <li>ation of (A).</li> </ul>  |  |  |

# HYDRIDES, IONIC, COVALENT AND INTERSTIAL COMPOUNDS

| 25. | . Ionic hydrides react with water to give |                                   |               |                      |                            |
|-----|-------------------------------------------|-----------------------------------|---------------|----------------------|----------------------------|
|     | 1) Acidic solutions                       | 2) Basic solutions                | s 3) Hy       | dride ion            | 4) Protons                 |
| 26. | Which ionic hydri                         | ide is stable up to its           | 5 M.P?        |                      | $\mathbf{A}$               |
|     | 1) <i>NaH</i>                             | <b>2)</b> <i>CaH</i> <sup>2</sup> | 3) <i>LiH</i> |                      | 4) <i>BaH</i> <sub>2</sub> |
| 27. | The co-ordination                         | number of <i>Na</i> in se         | olid Na       | H is                 | c,O'                       |
|     | 1) 4                                      | 2) 6                              | 3) 8          |                      | 4) 12                      |
| 28. | Which is polymer                          | ic hydride?                       |               | + (                  |                            |
|     | 1) <i>CaH</i> <sub>2</sub>                | 2) <i>MgH</i> <sub>2</sub>        | 3) Bah        | H <sub>2</sub>       | 4) <i>SrH</i> <sub>2</sub> |
| 29. | Which element for                         | rm hydride                        |               | 0                    |                            |
|     | 1) <i>Cr</i>                              | 2) <i>Mo</i>                      | 3) W          | $\mathbf{Q}$         | 4) <i>Sg</i>               |
| 30. | The hydride gap i                         | s used for elements               | of grou       | p                    |                            |
|     | 1) 1, 2, 3                                | 2) 3, 4, 5                        | 3) 7, 8       | , 9                  | 4) 6, 7, 8                 |
| 31. | Hydrolith, a sourc                        | ce of $H_2$ is                    |               |                      |                            |
|     | 1) <i>NaH</i>                             | 2) <i>CaH</i> <sub>2</sub>        | 3) <i>LiH</i> | ,                    | 4) <i>BaH</i> <sub>2</sub> |
| 32. | For binary hydrid                         | les of formula $MX_n$             | the value     | ue of <i>n</i> can b | e fractional for           |
|     | 1) Salt like hydride                      | 2S                                | 2) Co         | valent hydrid        | es                         |
|     | 3) Interstitial hydri                     | des                               | 4) Po         | lymeric hydri        | des                        |
| 33. | Which type of hyd                         | lrides are non-stoic              | hiometı       | ric hydrides         |                            |
|     | 1) Hydrides of grou                       | up 7, 8, 9                        | 2) Hyd        | lrides of group      | 03, 4, 5                   |
|     | 3) Hydrides of grou                       | up 14, 15                         | 4) Hyd        | lrides of group      | 01,2                       |
| 34. | When electric cur                         | rent is passed throu              | igh an i      | onic hydride         | in molten state            |
|     | 1) Hydrogen is libe                       | erated at anode                   | 2) H          | Hydrogen is li       | berated at cathode         |
|     | 3) Hydrogen is mig                        | grates towards cathod             | le 4) H       | Hydride ion re       | mains in solution          |

 $\mathbf{X}$ 

| 35. | VV I | lich of | the   | ιοπο  | wing n       | netais ca | n't liberate  | $H_2$ on re | eacting with d | nute HCl? |
|-----|------|---------|-------|-------|--------------|-----------|---------------|-------------|----------------|-----------|
|     | 1)   | Си      |       |       | 2) <i>Mg</i> |           | 3) <i>Fe</i>  |             | 4) Zn          |           |
| 36. | Wh   | nich of | the   | folla | wing n       | netals ad | lsorb hydro   | ogen?       |                |           |
|     | 1) 1 | Zn      |       |       | 2) <i>Pd</i> |           | 3) P <i>t</i> |             | 4) <i>K</i>    |           |
| 37. | Ma   | tching  | g typ | e     |              |           |               |             |                |           |
|     | Col  | lumn-   | I     |       | Colun        | nn-II     |               |             | (              |           |
|     | A)   | K       |       |       | p) Cov       | alent hy  | dride         |             |                |           |
|     | B)   | La      |       |       | q) Salt      | -Like ior | nic hydride   |             |                |           |
|     | C)   | Fe      |       |       | r) Con       | nplex hyc | dride         |             |                |           |
|     | D)   | Sn      |       |       | s) Nor       | -stoichic | metric hydr   | ide         |                |           |
|     |      | А       | В     | С     | D            |           |               | G           |                |           |
|     | 1)   | q       | S     | r     | р            |           |               |             |                |           |
|     | 2)   | р       | q     | r     | S            |           |               |             |                |           |
|     | 3)   | р       | q     | S     | r            | •         | 6             |             |                |           |
|     | 4)   | q       | р     | r     | S            | X         |               |             |                |           |
|     |      |         |       |       |              | 6         |               |             |                |           |

# PHYSICAL AND CHEMICAL PROPERTIES OF WATER

#### 38. Chemically soap is

25

1) Sodium Stearate 2) Calcium Stearate 3) Magnesium Stearate 4) Ferric Stearate

## **39.** Hard water is one which

- 1) Contains dissolved sodium salts
- 2) Contains dissolved gases
  - 3) Does not give good lather immediately with soap
  - 4) Violently reacts with Na metal

#### 40. Which salt is water soluble?

1) Calcium Stearate 2) Magnesium Stearate 3) Ferric Stearate 4) Sodium Stearate

| 41. | Which is insoluble in water?              |                                        |                                        |                                          |  |  |
|-----|-------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|--|--|
|     | 1) Sodium Palmitate                       |                                        | 2) Sodium Oleate                       |                                          |  |  |
|     | 3) Magnesium Pal                          | mitate                                 | 4) Potassium Steara                    | ate                                      |  |  |
| 42. | Hardness of wate                          | r is due to the presen                 | ce of                                  |                                          |  |  |
|     | 1) CaCl <sub>2</sub>                      | 2) Mg SO <sub>4</sub>                  | 3) Ca (HCO <sub>3</sub> ) <sub>2</sub> | 4) All the above                         |  |  |
| 43. | Temporary hard                            | ness is due to                         |                                        | çÖ.                                      |  |  |
|     | 1) CaCl <sub>2</sub>                      | 2) Mg (HCO <sub>3</sub> ) <sub>2</sub> | 3) MgSO <sub>4</sub>                   | 4) MgCl <sub>2</sub>                     |  |  |
| 44. | Permanent hardn                           | less of water arises du                | e to the presence o                    | f                                        |  |  |
|     | 1) Chlorides and S                        | ulphates of Ca & Mg                    | 2) Carbonates of C                     | Ca and Mg                                |  |  |
|     | 3) Bicarbonates of                        | Ca and Mg                              | 4) Phosphates of C                     | Ca and Mg                                |  |  |
| 45. | Temporary hard                            | ness of water can be r                 | removed                                |                                          |  |  |
|     | 1) By boiling                             |                                        | 2) By freezing                         |                                          |  |  |
|     | 3) By the addition                        | of NaCl                                | 4) By the addition of                  | of Na <sub>2</sub> SO <sub>4</sub>       |  |  |
| 46. | In Clark's metho                          | d, the substance used                  | for the removal of                     | temporary hardness of                    |  |  |
|     | water is                                  | S                                      |                                        |                                          |  |  |
|     | 1) NaOH                                   | 2) CaCO <sub>3</sub>                   | 3) Ca (OH) <sub>2</sub>                | 4) Ca(HCO <sub>3</sub> ) <sub>2</sub>    |  |  |
| 47. | The substance us                          | ed for regenerating th                 | ne exhausted permu                     | ıtit is                                  |  |  |
|     | 1) 100 Vol. H <sub>2</sub> O <sub>2</sub> | 2) Dil. HCl 3) 10% N                   | aCl Solution 4)10%                     | Na <sub>2</sub> CO <sub>3</sub> solution |  |  |
| 48. | The group respon                          | sible for the removal                  | of cations in ion ex                   | change resin is                          |  |  |
|     | 1) –NH3OH                                 | 2) –COOH                               | 3) –OH                                 | 4) –SH                                   |  |  |
| 49. | Deionised water i                         | s prepared by the foll                 | lowing method                          |                                          |  |  |
|     | 1) Clark's                                | 2) Ion exchange                        | 3) Permutit                            | 4) Calgon                                |  |  |
| 50. | Boiling point of h                        | eavy water is                          |                                        |                                          |  |  |
|     | 1) 100°C                                  | 2) 99°C                                | 3) 101.42°C                            | 4) 110°C                                 |  |  |

| 51. | Solubility of NaCl in heav                            | y water is                         |                                   |                                   |    |
|-----|-------------------------------------------------------|------------------------------------|-----------------------------------|-----------------------------------|----|
|     | 1) Same as that in $H_2O$                             |                                    | 2) 15% lowe                       | er than that in H <sub>2</sub> O  |    |
|     | 3) 15% more than that in H                            | 20                                 | 4) 100% mo                        | re than that in H <sub>2</sub> O  |    |
| 52. | The boiling point of D <sub>2</sub> O                 | is greater th                      | an H <sub>2</sub> O it is l       | because                           |    |
|     | 1) $D_2O$ has a lower ionic p                         | roduct                             |                                   |                                   | •  |
|     | 2) $D_2O$ has a lower dielectr                        | ric constant                       |                                   | G                                 |    |
|     | 3) $D_2O$ is an associated liqu                       | uid                                |                                   | $\sim$                            |    |
|     | 4) The molecular weight of                            | $D_2O$ is great                    | ter than H <sub>2</sub> O         |                                   |    |
| 53. | Anhydride of deutero sulj                             | ohuric acid i                      | s                                 |                                   |    |
|     | 1) SO <sub>2</sub> 2) SO <sub>3</sub>                 |                                    | 3) S <sub>6</sub> O               | 4) S <sub>2</sub> O <sub>6</sub>  |    |
| 54. | Anhydride of deutero nitr                             | ic acid is                         | XV                                |                                   |    |
|     | 1) NO 2) NO <sub>2</sub>                              | . 0                                | 3) N <sub>2</sub> O5              | 4) N <sub>2</sub> O <sub>4</sub>  |    |
| 55. | Deutero methane is obtain                             | ned by the de                      | euterolysis of                    |                                   |    |
|     | 1) Mg <sub>3</sub> N <sub>2</sub> 2) CaC <sub>2</sub> |                                    | 3) Al <sub>4</sub> C <sub>3</sub> | 4) Ca <sub>3</sub> P <sub>2</sub> |    |
| 56. | If a sample of hard water                             | contains 68                        | 8 ppm of ,tl                      | hen the hardness of the sam       | ne |
|     | sample of water is                                    |                                    |                                   |                                   |    |
|     | 1. 68 2. 100                                          |                                    | 3.200                             | 4. 50                             |    |
| 57. | List 1                                                | List - 2                           |                                   |                                   |    |
|     | A) Hardness of water                                  | 1) Remove                          | d by simple b                     | oiling                            |    |
|     | B) Temporary hardness                                 | 3 2) Bicarbo                       | nates, chloride                   | es, and sulphates of Ca and       |    |
|     |                                                       | Mg                                 |                                   |                                   |    |
|     | C) Calgon                                             | 3) Bicarbo                         | onates, Chlorid                   | les and Sulphates                 |    |
|     | D) Permutit                                           | 4) Na <sub>2</sub> Al <sub>2</sub> | 2Si2O8.xH2O                       |                                   |    |
|     |                                                       | 5) Na <sub>2</sub> [N              | a4 (PO3)6]                        |                                   |    |





iii) Mg Al<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>. xH<sub>2</sub>O

iv) Ca Al<sub>2</sub> Si<sub>2</sub>O<sub>8</sub>

#### The correct combination is

- 1) All are correct 2) Only i and ii are correct
- 3) Only ii and iii are correct 4) Only iv is correct
- 60. The products formed when heavy water is reacted with magnesium nitride, are..

4) Si<sup>4+</sup>

- 1) NH<sub>3</sub>, Mg (OH)<sub>2</sub> 2) NH<sub>3</sub>, Mg(OD)<sub>2</sub>
- 3) ND<sub>3</sub>, Mg (OH)<sub>2</sub> 4) ND<sub>3</sub>, Mg(OD)<sub>2</sub>

61. Sulphur trioxide is dissolved in heavy water to form a compound X

Hybridisation of sulphur in X is

- 1)  $sp^2$  2)  $sp^3$  3) sp 4) dsp
- 62. Exhausted permutit does not contain ---- ion
  - 1) Na<sup>+</sup> 2) Mg<sup>2+</sup> 3) Al<sup>3+</sup>
- 63. The formula of exhausted pernnutit is
  - 1) CaAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>xH<sub>2</sub>O 2) Na<sub>2</sub>Al<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>xH<sub>2</sub>O
  - 3)  $CaB_2Si_2O_8xH_2O$  4)  $K_2Al_2Si_2O_8xH_2O$
- 64. The formula of calgon is
  - 1) (NaPO<sub>3</sub>)<sub>6</sub> 2) Mg<sub>3</sub> (PO<sub>4</sub>)<sub>2</sub> 3) Na<sub>3</sub>PO<sub>4</sub> 4) MgSO<sub>4</sub>
- 65. pH of the water coming out of cation exchange resin
  - 1) 7 ((2) > 7 3) < 7 4) Cannot say

#### 66. Which of the following not correct?

1) Temporary hardness of water is due to the presence of bicarbonates of calcium and magnesium in it.

- 2) Permutit is artificial zeolite.
- 3)  $H_2O_2$  acts as an oxidizing agent in the following reaction:
- $H_2O_2 + Hg_2O \rightarrow Hg + H_2O + O_2$

4)  $H_2O_2$  is used as bleaching agent for delicate textiles.

<u>Heavy Water, Hydrogen Peroxide, Preparation, Reactions, Uses and</u> <u>Structure</u>

| 67. | Oxygenated wate                                          | r is                                      |                                       |                                         |
|-----|----------------------------------------------------------|-------------------------------------------|---------------------------------------|-----------------------------------------|
|     | 1) D <sub>2</sub> O                                      | 2) H <sub>2</sub> O <sub>2</sub>          | 3) Soft water                         | 4) Hard water                           |
| 68. | H <sub>2</sub> O <sub>2</sub> is obtained                | by adding dil H <sub>2</sub>              | SO4 to                                |                                         |
|     | 1) PbO <sub>2</sub>                                      | 2) MnO <sub>2</sub>                       | 3) BaO <sub>2</sub> 8H <sub>2</sub> O | 4) BaCO <sub>3</sub>                    |
| 69. | In the preparatio                                        | n of H <sub>2</sub> O <sub>2</sub> by aut | o oxidation method the                | e starting substance is                 |
|     | 1) 2-ethyl anthraq                                       | uinone                                    | 2) 2–ethyl anthrag                    | uinone                                  |
|     | 3) p-benzoquinon                                         | e                                         | 4) N-methyl anilin                    | e                                       |
| 70. | $\mathrm{H_2O_2} + \mathrm{H_2O} \rightarrow \mathrm{I}$ | $\mathrm{H_{3}O^{+} + HO_{2}^{-}}$        | , CO                                  |                                         |
|     | This reaction indic                                      | cates                                     |                                       |                                         |
|     | 1) $H_2O_2$ is more a                                    | cidic than H <sub>2</sub> O               | 2) $H_2O$ is more ac                  | idic than H <sub>2</sub> O <sub>2</sub> |
|     | 3) Both H <sub>2</sub> O and I                           | H <sub>2</sub> O <sub>2</sub> are acidic  | 4) $H_2O_2$ is a bleac                | hing agent                              |
| 71. | The number of r                                          | noles of H <sub>2</sub> O <sub>2</sub> no | eeded to reduce 1 mo                  | le of KMnO4 in acidic                   |
|     | medium is                                                | X                                         |                                       |                                         |
|     | 1) 2                                                     | 2) 2.5                                    | 3) 5                                  | 4) 3                                    |
| 72. | When treated wit                                         | h H <sub>2</sub> O <sub>2</sub> , aqueous | KMnO4 in acidic mee                   | lium gives finally                      |
|     | 1) Mn <sup>2+</sup>                                      | 2) Mn <sup>3+</sup>                       | 3) Mn <sup>4+</sup>                   | 4) Mn <sup>6+</sup>                     |
| 73. | H <sub>2</sub> O <sub>2</sub> reduces                    |                                           |                                       |                                         |
|     | 1) PbS                                                   | 2) KI solution                            | 3) Cl <sub>2</sub>                    | 4) Cr (OH) 3                            |
| 74. | Oxidation state of                                       | f oxygen in H <sub>2</sub> O <sub>2</sub> | is                                    |                                         |
|     | 1) –1                                                    | 2) – 2                                    | 3) + 1                                | 4) + 2                                  |

| 75. In H <sub>2</sub> O <sub>2</sub> molec                                          | 75. In H <sub>2</sub> O <sub>2</sub> molecule, the H–O–O angle is |                                           |                          |  |  |  |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------|--------------------------|--|--|--|
| 1) 94°48'                                                                           | 2) 11°30'                                                         | 3) 90°                                    | 4) 116°48'               |  |  |  |
| 76. In H <sub>2</sub> O <sub>2</sub> molec                                          | cule, the O–O bond le                                             | ength is                                  |                          |  |  |  |
| 1) 1.34A°                                                                           | 2) 1.48A°                                                         | 3) 1.54A°                                 | 4) 1.20A°                |  |  |  |
| 77. In H <sub>2</sub> O <sub>2</sub> molec                                          | ule the dihedral ang                                              | le is                                     | $\sim$                   |  |  |  |
| 1) 95°                                                                              | 2) 106° 30'                                                       | 3) 111° 30'                               | 4) 120° 18'              |  |  |  |
| 78. Solid H <sub>2</sub> O <sub>2</sub> has                                         | s non planar and non                                              | linear structure ba                       | ased on                  |  |  |  |
| 1) Dipole mome                                                                      | ent 2) X-ray study                                                | 3) Both 1 & 2                             | 4) Chemical method       |  |  |  |
| 79. The number o                                                                    | f moles of electrons                                              | involved in the n                         | nanufacture of 1 mole of |  |  |  |
| H <sub>2</sub> O <sub>2</sub> from 50°                                              | %. H <sub>2</sub> SO <sub>4</sub> is                              | X                                         |                          |  |  |  |
| 1) 2                                                                                | 2) 3                                                              | 3) 1                                      | 4) 4                     |  |  |  |
| 80. Catalytic union                                                                 | of $H_2$ and $O_2$ to get                                         | H <sub>2</sub> O <sub>2</sub> is found in |                          |  |  |  |
| 1) Electrolysis o                                                                   | of 50% H <sub>2</sub> O <sub>2</sub>                              |                                           |                          |  |  |  |
| 2) Electrolysis o                                                                   | of aqueous solution of                                            | 6                                         |                          |  |  |  |
| (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>                                     | $+ H_2SO_4$                                                       |                                           |                          |  |  |  |
| 3) Treating BaO                                                                     | 2 with cold and dilute                                            | H <sub>2</sub> SO <sub>4</sub>            |                          |  |  |  |
| 4) Auto oxidatio                                                                    | 4) Auto oxidation                                                 |                                           |                          |  |  |  |
| 81. Which of the following is not correct regarding the electrolytic preparation of |                                                                   |                                           |                          |  |  |  |
| H <sub>2</sub> O <sub>2</sub> ?                                                     |                                                                   |                                           |                          |  |  |  |
| 1) Lead is used                                                                     | as cathode                                                        | 2) 50% H <sub>2</sub> SO <sub>4</sub>     | is used                  |  |  |  |
| 3) Hydrogen is l                                                                    | iberated at anode                                                 | 4) Sulphuric aci                          | d undergoes oxidation    |  |  |  |
| 82. The oxidation state of the most electronegative element in the products of the  |                                                                   |                                           |                          |  |  |  |
| reaction $BaO_2$ with dil. $H_2SO_4$ is                                             |                                                                   |                                           |                          |  |  |  |

1) 0 and -1 2) -1 and -2 3) -2 and 0 4) -2 and +1

| 83. | . Weight of $H_2O_2$ in 20ml of 10vol, 10ml of 15 volume, 5ml of 20vol of $H_2O_2$ , |                                                 |                                         |                                                     |  |  |
|-----|--------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|-----------------------------------------------------|--|--|
|     | solutions is p1,p2,p3 respectively. Then the correct order is                        |                                                 |                                         |                                                     |  |  |
|     | 1) $p_1 < p_2 < p_3$                                                                 | 2. $p_2 < p_1 < p_3$                            | 3) p <sub>3</sub> < p <sub>2</sub> < p1 | 4) p <sub>1</sub> < p <sub>3</sub> < p <sub>2</sub> |  |  |
| 84. | Volume strength                                                                      | of perhydrol is                                 |                                         |                                                     |  |  |
|     | 1) 30                                                                                | 2) 60                                           | 3) 100                                  | 4) 11.2                                             |  |  |
| 85. | Complete decom                                                                       | position of 10 ml of po                         | erhydrol gives lit                      | of O <sub>2</sub> at STP                            |  |  |
|     | 1) 1000                                                                              | 2) 100                                          | 3) 10                                   | 4) 1                                                |  |  |
| 86. | The volume of O                                                                      | 2 liberated at STP fro                          | om 20ml of 10 Vol H                     | 202 is                                              |  |  |
|     | 1) 20 ml                                                                             | 2) 10 ml                                        | 3) 200 ml                               | 4) 100 ml                                           |  |  |
| 87. | The volume stren                                                                     | ngth of 1.5 N H <sub>2</sub> O <sub>2</sub> is  |                                         |                                                     |  |  |
|     | 1) 4.8V                                                                              | 2) 8.4V                                         | 3) 3.9V                                 | 4) 8.0V                                             |  |  |
| 88. | A commercial sa                                                                      | mple of H <sub>2</sub> O <sub>2</sub> is labe   | lled as 10 volumes. It                  | ts percentage strength                              |  |  |
|     | is nearly                                                                            |                                                 | 0                                       |                                                     |  |  |
|     | 1) 1%                                                                                | 2) 3%                                           | 3) 10%                                  | 4) 90%                                              |  |  |
| 89. | The molarity of 5                                                                    | 5.6V H <sub>2</sub> O <sub>2</sub> is           |                                         |                                                     |  |  |
|     | 1) 0.2                                                                               | 2) 0.5                                          | 3) 1                                    | 4) 2                                                |  |  |
| 90. | The volume stren                                                                     | ngth of 1M H <sub>2</sub> O <sub>2</sub> is     |                                         |                                                     |  |  |
|     | 1) 10V                                                                               | 2) 11.2V                                        | 3) 16.8V                                | 4) 22.4V                                            |  |  |
| 91. | The volume of pe                                                                     | erhydrol which on dec                           | composition gives 2 li                  | it of O <sub>2</sub> gas at STP is                  |  |  |
|     | 1) 100 ml                                                                            | 2) 2 ml                                         | 3) 10 ml                                | 4) 20 ml                                            |  |  |
| 92. | The volume of 10                                                                     | Vol H <sub>2</sub> O <sub>2</sub> required      | to get 200 ml of O <sub>2</sub> g       | as at STP is                                        |  |  |
|     | 1) 10 ml                                                                             | 2) 20 ml                                        | 3) 30 ml                                | 4) 40 ml                                            |  |  |
| 93. | The molarity of 2                                                                    | 22.4 vol H <sub>2</sub> O <sub>2</sub> solution | n is                                    |                                                     |  |  |
|     | 1) 1 M                                                                               | 2) 2 M                                          | 3) 0.5 M                                | 4) 0.893 M                                          |  |  |

| 94. | The norm                                                                                            | mality of 2                        | 2.24 vol H <sub>2</sub> O           | $0_2$ is                                                                                         |                                                                        |  |  |
|-----|-----------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|
|     | 1) 1.786                                                                                            |                                    | 2) 4                                | 3) 0.4                                                                                           | 4) 0.2                                                                 |  |  |
| 95. | W/V per                                                                                             | centage of                         | f 1 M H <sub>2</sub> O <sub>2</sub> | solution is                                                                                      |                                                                        |  |  |
|     | 1) 3.03                                                                                             | 2) 3.4                             | 3) 6.8                              | 4) 1.7                                                                                           |                                                                        |  |  |
| 96. | The volu                                                                                            | ime streng                         | th of 1.7%                          | w/v $H_2O_2$ is                                                                                  |                                                                        |  |  |
|     | 1) 5.6                                                                                              | 2) 11.2                            | 3) 22.4                             | 4) 2.8                                                                                           |                                                                        |  |  |
| 97. | Volume                                                                                              | strength o                         | f 500 ml sol                        | ution containing 3.4 gr o                                                                        | of H <sub>2</sub> O <sub>2</sub> is                                    |  |  |
|     | 1) 11.2                                                                                             | 2) 6.8                             | 3) 1.12                             | 4) 2.24                                                                                          | $\sim$                                                                 |  |  |
| 98. | Weight o                                                                                            | of H <sub>2</sub> O <sub>2</sub> p | resent in 10                        | 00 ml of 2.24 vol H <sub>2</sub> O <sub>2</sub>                                                  | is                                                                     |  |  |
|     | 1) 3.4                                                                                              | 2) 6.8                             | 3) 34                               | 4) 68                                                                                            |                                                                        |  |  |
| 99. | 10 ml of                                                                                            | f a H <sub>2</sub> O <sub>2</sub>  | solution, o                         | n decomposition libera                                                                           | ited 200ml of O <sub>2</sub> at STP.                                   |  |  |
|     | Then the                                                                                            | e weight/vo                        | olume perce                         | ntage of that H <sub>2</sub> O <sub>2</sub> solu                                                 | ition is                                                               |  |  |
|     | 1) 3.03                                                                                             | 2) 6.07                            | 1                                   | 3) 9.1 (4) 3.4                                                                                   |                                                                        |  |  |
| 100 | . Hyperol                                                                                           | l is                               |                                     |                                                                                                  |                                                                        |  |  |
|     | 1) (NH <sub>4</sub> )                                                                               | 2SO4.H2O                           | 0 <sub>2 2</sub> ) CO (N            | H <sub>2</sub> ) <sub>2</sub> .H <sub>2</sub> O <sub>2</sub> 3) NaH <sub>2</sub> PO <sub>4</sub> | .H <sub>2</sub> O <sub>2</sub> 4) CuSO <sub>4</sub> .5D <sub>2</sub> O |  |  |
| 101 | . Normali                                                                                           | ity of 100                         | volume H <sub>2</sub> C             | <b>)</b> <sub>2</sub> is                                                                         |                                                                        |  |  |
|     | 1) 1.78                                                                                             | 2) 8.9                             | 3) 17.86                            | 4) 0.89                                                                                          |                                                                        |  |  |
| 102 | . The mo                                                                                            | re viscous                         | liquid is                           |                                                                                                  |                                                                        |  |  |
|     | 1) H <sub>2</sub> O                                                                                 | N                                  | 2) H <sub>2</sub> O <sub>2</sub>    | 3) D <sub>2</sub> O                                                                              | 4) C <sub>2</sub> H <sub>5</sub> OH                                    |  |  |
| 103 | 03. Which of the following is correct?                                                              |                                    |                                     |                                                                                                  |                                                                        |  |  |
|     | i) 30%                                                                                              | H <sub>2</sub> O <sub>2</sub> is p | erhydrol                            |                                                                                                  |                                                                        |  |  |
|     | ii) 1M H <sub>2</sub> O <sub>2</sub> solution is 11.2 Volume H <sub>2</sub> O <sub>2</sub> solution |                                    |                                     |                                                                                                  |                                                                        |  |  |
|     | iii) 1M                                                                                             | H <sub>2</sub> O <sub>2</sub> has  | 34 gr in 100                        | ml solution                                                                                      |                                                                        |  |  |
|     | iv) Hyp                                                                                             | erol is 100                        | Volumes H <sub>2</sub>              | 02                                                                                               |                                                                        |  |  |
|     |                                                                                                     |                                    |                                     |                                                                                                  |                                                                        |  |  |

- 1) Only (i) is correct
- 3) Only (iii) is incorrect

- 2) Both (i) and (ii) are correct
- 4) (i, ii, iii) are correct

### 104. Which of the following is correct?

- A)  $H_2O_2$  has open book structure B)  $H_2O_2$  is harmful disinfectant
- C)  $H_2O_2$  is slightly basic in solutions
- D) H<sub>2</sub>O<sub>2</sub> acts as oxidant in rocket fuels

Among the above, the in-correct statements are

- 1) B and C 2) A and C
- 3) C and B 4) A and D
- 105. The reaction between  $H_2O_2$  and  $KMnO_4$  is  $2KMnO_4 + 3H_2SO_4 + 5H_2O_2$  $K_2SO_4 + 2MnSO_4 + 8H_2O + 5O_2$ . In a reaction excess of  $H_2O_2$  is added to 0.1 mole of acidified KMnO<sub>4</sub> solution. Then the volume of  $O_2$  gas liberated at STP is
  - 1) 5.6 lit 2) 6.6 lit 3) 11.2 lit 4) 22.4 lit
- 106. The concentration of the same solution of  $H_2O_2$  in different methods is given below.
  - List 1
     List 2

     A)
     Molarity
     1) 6.8

     B)
     Normality
     2) 22.4

     C)
     % W/V
     3) 4

     D)
     Volume strength
     4) 2

     5) 10

The correct match is

|     | A | <u>B</u> | <u>C</u> | D |
|-----|---|----------|----------|---|
| (1) | 5 | 3        | 1        | 2 |
| (2) | 4 | 3        | 1        | 2 |
| (3) | 3 | 4        | 1        | 2 |

| (4)                                                                           | 1 2                                      | 3 4               |                                      |                                                       |  |
|-------------------------------------------------------------------------------|------------------------------------------|-------------------|--------------------------------------|-------------------------------------------------------|--|
| 107. One liter o                                                              | f 0.5 M H <sub>2</sub> O <sub>2</sub> i  | is diluted to 2   | lit. The volu                        | me strength of the resultant                          |  |
| solution                                                                      |                                          |                   |                                      |                                                       |  |
| 1) 5.6                                                                        | 2) 2.8                                   |                   | 3) 11.2                              | 4) 22.4                                               |  |
| 108. The weight                                                               | t of H <sub>2</sub> O <sub>2</sub> prese | ent in 0.5 lit of | 11.2 vol H <sub>2</sub>              | O <sub>2</sub> solution is                            |  |
| 1) 34 g                                                                       | 2) 17 g                                  |                   | 3) 68 g                              | 4) 8.5 g                                              |  |
| 109. The volum                                                                | e strength of s                          | olution forme     | d by mixing                          | 1 lit 0.5 M H <sub>2</sub> O <sub>2</sub> with 2 lit  |  |
| 0.5 M H <sub>2</sub> O                                                        | 4                                        |                   |                                      | $\sim$                                                |  |
| 1) 11.2                                                                       | 2) 5.6                                   |                   | 3) 22.4                              | 4) 2.8                                                |  |
| 110. Number of                                                                | f moles of O <sub>2</sub> g              | gas evolved by    | the decom                            | position of 1 lit of 1N H <sub>2</sub> O <sub>2</sub> |  |
| solution is                                                                   |                                          |                   | 5                                    |                                                       |  |
| 1) 0.5                                                                        | 2) 0.375                                 |                   | 3) 0.25                              | 4) 1                                                  |  |
| 111. 1 Kg of a s                                                              | sample of water                          | · contained 22    | 2 mg of CaC                          | Cl <sub>2</sub> and 219 mg of                         |  |
| Mg(HCO                                                                        | 3)2. So the peri                         | nanent and te     | mporary ha                           | rdness are ppm                                        |  |
| andppn                                                                        | n                                        |                   |                                      |                                                       |  |
| 1) 200, 200                                                                   |                                          | 2) 200, 150       |                                      |                                                       |  |
| 3) 200, 300                                                                   |                                          | 4) 150, 220       |                                      |                                                       |  |
| 112. 1 Kg of wa                                                               | ater containing                          | the following     | mass of Mg                           | gCl <sub>2</sub> has a hardness of 1000               |  |
| p.p.m.                                                                        | 1.                                       |                   |                                      |                                                       |  |
| 1) 9.5 gm                                                                     |                                          | 2) 0.95 gm        |                                      |                                                       |  |
| 3) 95 gm                                                                      |                                          | 4) 950 gm         |                                      |                                                       |  |
| 113. The weight of $H_2O_2$ present in 70 ml of 6% (w/v) $H_2O_2$ solution is |                                          |                   |                                      |                                                       |  |
| 1) 6 g                                                                        | 2) 4.2 g                                 | 3) 4.             | .5 g                                 | 4) 4.8 g                                              |  |
| 114. The weight                                                               | t of H <sub>2</sub> O <sub>2</sub> prese | ent in 1 lit of 5 | .6 vol H <sub>2</sub> O <sub>2</sub> | is                                                    |  |
| 1) 17 g                                                                       | 2) 34 g                                  | 3) 68             | g                                    | 4) 8.5 g                                              |  |

- 115. Ferrous ion change to X ion, on reacting with acidified hydrogen peroxide. The number of d-electrons present in X and its magnetic moment (in BM) are respectively
  - 1) 6 and 6.952) 5 and 5.923) 5 and 4.94) 4 and 5.92

116. 20 ml H<sub>2</sub>O<sub>2</sub> is added to excess of KI in acidic medium. The liberated I<sub>2</sub> required 10 ml of 1M hypo. The molarity of H<sub>2</sub>O<sub>2</sub> is

- 1) 0.5 M 2) 0.25M 3) 0.025 M 4) 5M
- 117. 40 ml H<sub>2</sub>O<sub>2</sub> solution is added to excess of KI in the presence of H<sub>2</sub>SO<sub>4</sub>. The

liberated I<sub>2</sub> requires 20 ml of 0.4N hypo. The volume strength of  $H_2O_2$ 

solution is

1) 11.2 2) 1.12 3) 22.4 4) 2.24

118. The weight of hypo (Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> 5H<sub>2</sub>O) required to react with the I<sub>2</sub> liberated by

17 gr of H<sub>2</sub>O<sub>2</sub> in iodometry titration is

- 1) 496 gr 2) 248 gr
- 3) 124 gr 4) 62 gr
- 119. The weight of iodine liberated when excess of KI reacts with 500 ml of 1 M

H<sub>2</sub>O<sub>2</sub> is (Mol wt of I<sub>2</sub> is 254)

1) 254 gr (\* 2) 127 gr 3) 535 gr 4) 508 gr

120. Which one of the following reactions represents the oxidizing property of H<sub>2</sub>O<sub>2</sub>?

1) 
$$2KMnO_4 + 3H_2SO_4 + 5H_2O_2 \rightarrow K_2SO_42MnSO_4 + 8H_2O + 5O_2$$

- 2)  $2K_3[Fe(CN)_6] + 2KOH + H_2O_2 \rightarrow 2K_4[Fe(CN)_6] + 2H_2O + O_2$
- 3)  $PbO_2 + H_2O_2 \rightarrow PbO + H_2O + O_2$
- 4)  $2KI + H_2SO_4 + H_2O_2 \rightarrow K_2SO_4 + I_2 + 2H_2O_4$

#### 121. Match the following.

| Set-I                                    | Set-II                |  |
|------------------------------------------|-----------------------|--|
| A) 10 vol H <sub>2</sub> O <sub>2</sub>  | 1) Perhydrol          |  |
| B) 20 vol H <sub>2</sub> O <sub>2</sub>  | 2) 5.358 N            |  |
| C) 30 vol H <sub>2</sub> O <sub>2</sub>  | 3) 1.785 M            |  |
| D) 100 vol H <sub>2</sub> O <sub>2</sub> | 4) 3.03%              |  |
| 1) A-4, B-3, C-2, D-1                    | 2) A-1, B-2, C-3, D-4 |  |
| 3) A-1, B-3, C-2, D-4                    | 4) A-4, B-2, C-3, D-1 |  |
|                                          |                       |  |

122. Electrolysis of X gives Y at anode. Vacuum distillation of Y gives H<sub>2</sub>O<sub>2</sub>. The

number of (O–O) bonds present in X and Y respectively are

- 1) 1, 1
   2) 1, 2

   3) Zero, 1
   4) Zero, zero
- 123. The reaction of  $H_2O_2$  with X does not liberate gaseous product. Which of the

#### following is X?

- 1)  $PbO_2$  2)  $KMnO_4/H^+$  3) PbS 4)  $Cl_2$
- 124. Which of the following equations denotes that  $H_2O_2$  acts as a reducing agent?
  - PbS + 4H<sub>2</sub>O<sub>2</sub> PbSO<sub>4</sub> + 4H<sub>2</sub>O
     NaNO<sub>2</sub> + H<sub>2</sub>O<sub>2</sub> NaNO<sub>3</sub> + H<sub>2</sub>O
     Ag<sub>2</sub>O + H<sub>2</sub>O<sub>2</sub> 2Ag + O<sub>2</sub> + H<sub>2</sub>O
  - 4)  $2KI + H_2O_2 + H_2SO_4 I2 + K_2SO_4 + H_2O$
- 125. The solution is used for the preparation of  $H_2O_2$  by electrolytic procedure is
  - 1) 0.2N NaOH 2) 50% H<sub>2</sub>SO<sub>4</sub>

3) 20% NaOH 4) 5% NaCl

#### 126. In which of the following reactions, H<sub>2</sub>O<sub>2</sub> acts as a reducing reagent?

1)  $PbO_{2(g)} + H_2O_{2(aq)} g PbO(s) + H_2O(l) + O_{2(g)}$ 

2)  $Na_2SO_3(aq) + H_2O(aq) g Na_2SO_4(aq) + H_2O(l)$ 

- 3)  $2KI_{(aq)} + H_2O_2_{(aq)} g 2KOH_{(aq)} + I_{2(s)}$
- 4) PbS +  $4H_2O_2$  gPbSO<sub>4</sub> +  $4H_2O$
- 127. \_\_\_\_\_process is used for the removal of hardness of water.
  - 1) Calgon 2) Bayer's
  - 3) Sempeck 4) Hoopes
- 128. What is the oxidation state of Fe in the product formed when acidified potassium ferrocyanide is treated with H<sub>2</sub>O<sub>2</sub>?
  - 1) +2 2) +6 3) +1 4) +3
- 129. Which one of the following compounds undergoes hydrolysis during distillation to yield hydrogen peroxide?
  - 1)  $H_2S_2O_8$  2)  $H_2S_2O_6$  3)  $HNO_3$  4)  $H_4P_2O_7$
- 130. What is the gas liberated when alkaline formaldehyde solution is treated with H<sub>2</sub>O<sub>2</sub>?
  - 1)  $CO_2$  2)  $O_2$  3)  $CH_4$  4)  $H_2$

131. The orange coloured compound formed when  $H_2O_2$  is added to  $TiO_2$  solution

acidified with conc.  $H_2SO_4$  is

| 1) Ti <sub>2</sub> O <sub>3</sub> | 2) H <sub>2</sub> Ti <sub>2</sub> O <sub>8</sub> |
|-----------------------------------|--------------------------------------------------|
| 3) H2TiO4                         | 4) H2Ti2O8                                       |

#### KEY

### LEVEL - I

| 1) 1   | 2) 1    | 3) 3   | 4) 2  | 5) 1   | 6) 3   | 7) 3   | 8) 1   | 9) 1   | 10) 4  |
|--------|---------|--------|-------|--------|--------|--------|--------|--------|--------|
| 11)3   | 12) 3   | 13) 4  | 14) 4 | 15) 3  | 16) 2  | 17) 3  | 18) 4  | 19) 2  | 20) 2  |
| 21)3   | 22)2    | 23) 4  | 24) 1 | 25) 2  | 26) 3  | 27) 2  | 28) 2  | 29) 1  | 30) 3  |
| 31) 2  | 32) 3   | 33) 1  | 34) 1 | 35) 1  | 36) 2  | 37) 1  | 38) 1  | 39) 3  | 40) 4  |
| 41) 3  | 42) 4   | 43) 2  | 44)1  | 45) 1  | 46) 3  | 47) 3  | 48)2   | 49) 2  | 50) 3  |
| 51) 2  | 52) 4   | 53) 2  | 54) 3 | 55)3   | 56) 4  | 57) 1  | 58) 3  | 59) 3  | 60) 4  |
| 61) 2  | 62) 1   | 63) 1  | 64) 1 | 65) 3  | 66) 3  | 67) 2  | 68) 3  | 69) 2  | 70) 1  |
| 71) 2  | 72) 1   | 73) 3  | 74) 1 | 75) 1  | 76) 2  | 77) 3  | 78) 3  | 79) 1  | 80) 4  |
| 81) 3  | 82) 2   | 83) 3  | 84) 3 | 85) 4  | 86) 3  | 87) 2  | 88)2   | 89) 2  | 90) 2  |
| 91) 4  | 92) 2   | 93) 2  | 94) 3 | 95) 2  | 96) 1  | 97) 4  | 98) 2  | 99)2   | 100) 2 |
| 101) 3 | 8 102)1 | 103) 3 | 104)1 | 105) 1 | 106) 2 | 107) 2 | 108) 2 | 109) 2 | 110)3  |
| 111)2  | 112)1   | 113)2  | 114)1 | 115)2  | 116)2  | 117)2  | 118) 2 | 119) 2 | 120)4  |
| 121)4  | 122)3   | 123)3  | 123)3 | 124)2  | 125)1  | 126)1  | 127)4  | 128)1  | 129) 2 |
| 130)3  | 8 131)2 |        | 5     |        |        |        |        |        |        |
|        |         | 2      | •     |        |        |        |        |        |        |
|        | 2       |        |       |        |        |        |        |        |        |
|        |         |        |       |        |        |        |        |        |        |
|        |         |        |       |        |        |        |        |        |        |