Genetics

1.	In a plant cell with n=7, the diploid	cell found to b	e 13.The reason	can be[]							
	1. Presence of one chromosome in 3 of	copies										
	2. Presence of one chromosome in on	ly one copy										
	3. Missing of one paternal chromoson	ne.										
	4. Addition of one maternal chromoso	ome.										
2.	Experimental organism in linkage s	study was		[
	1. Pisum 2. Lens cu	ılinaris	3. Drosophila	4.	Zea							
3.	Linkage for the first time discovered by											
	1. Bateson and Punnett 2. Morgan	a 3. Me	endel 4	4.Hugo d	eVries							
4.	True statement regarding reasons for selecting <i>Pisum sativum</i> by Mendel for his											
	hybridization experiments			[]							
	A. Though bisexual it is easily cross p	ollinated	XIV									
	B. It can also self fertilized		*									
	C. It shows seven contrasting characters											
	D. It is perennial and produce many seeds											
	1. A, B & C 2. B, C & D	3. C, A & D	4. A &]	В								
5.	Dominant allele in Pisum sativum	5		[]							
	A. Wrinkled seed B. Grey se	eed coat										
	C. Axial flowers D. Constricted Pods											
	1. A & B 2. B & C	3. C & D	4. D & A	A								
6.	Yellow colour of the pod and yellow colour of the cotyledons in Pisum are											
	respectively											
	1. Dominant and Recessive	2. Dominant and Dominant										
	3. Recessive and Dominant											
7.	Distribution of constricted pods in a	Distribution of constricted pods in a population of Pisum sativum										
	1. Less than 10% 2. More the	nan 50% 3. In	n 100% 4	1. Nearly	25%							
8.	In Antirrhinum majus colour of the fl	ower can be red	or white or pink	. []							
	True statement regarding this is											
	1. Colour of the flower is controlled b	y three differen	t genes									
	2. Colour is multiple allelic. Red is do	ominant over pir	nk and white.									
	3. Colour is biallelic but do not segreg	gate.										
	4. Red and white are true breeds. Red	is not complete	ly dominant over	r white.								

9.	A cross between	true breeds of <i>Antin</i>	rhinum for flower c	colour shows g	genoty	pe and					
	phenotype in F ₂	generation respectiv	vely (R-red colour: 1	white colour	•)						
					[]					
	1. RR : Rr : rr	Red: Red: Wh	nite								
	2. RR : Rr : rr	Red: Pink: W	hite								
	3. RR : Rr : rr	Pink : Pink : W	hite								
	4. RR : Rr : rr	Red : Pink : Pin	nk								
10.	In a population	of 896 plants %age	of genotype AABb is	S	4						
						}					
	1. 112	2. 249	3. 56	4. 336		1					
11.	A plant with he	terozygous dominant	t for both the charac	cters is crosse	d witl	1					
	homozygous red	cessive plant									
				\mathbf{O}	[]					
	A. The cross is a back cross										
	B. The cross is a	test cross	6.0								
	C. In the progen	y four different pheno	types appear								
	D. The resulting	phenotypes are equal	in ratio								
	1. A, B & C	2. A, C & D	3. B & C	4. B, C & I)						
12.	In a cross betwe	een a homozygous do	minant and homozy	gous recessiv	e par	ents					
					[]					
	A. All the F ₁ gen	eration individuals sh	ow similar phenotype	e							
	B. Parental traits	reappear in F ₂ genera	ution								
	C. Equal ratio of	reciprocal heterozygo	ote's appear in F ₂ gen	eration							
	D. Half of the F ₂	individuals are homo	zygous								
	1. A & B	2. A, B & C	3.A, B & D	4. A, B, C	& D						
13.	In a population	of <i>Pisum sativum</i> te	rminal inflorescence	e is seen in							
	4				[]					
	1. Less than axil	lary inflorescence	2. More than a	xillary inflores	scence	<u>;</u>					
	3. Equal with axi	illary inflorescence	4. No plant sh	ows terminal i	nflore	scence					
14.	A chromosome	with gene arrangemer	nt of <u>a b c d e f</u> underg	gone a mutatio	n and	resulted					
	with gene arrang	ement <u>a b e d c f.</u> The	mutation is		[]					
	1. Duplication	2. Inversio	n 3. Deletion	4. A	dditio	n					

15.	In linkage				[]							
	A. Parental types	are always more th	an reciprocal types										
	B. Occasionally segregation does not take place												
	C. Assortment of genes does not take place in more off springs												
	D. By studying 1	inkage, arrangement	of genes on chromo	of genes on chromosomes can be known									
	1. A &B	2.A, C &	D 3.A, B &	D 3.A, B & D 4.B, C									
16.	A pure tall plan	geny											
			[
	1. All of them are	e dwarf	2. All of	them are tall									
	3. Half of them a	of them are tall 4. Some of them are t											
17.	In a monohybrid cross, in a population of 524 F ₂ generation plants how many a												
	of heterozygous				[]							
	1. 262	2. 131	3. 393	4.100									
18.	In a diploid plant cell with n=8, the chromosomes are found to be 17. This may be												
	due to		[]									
	1. Three copies of	of one chromosomes	2. Four c	opies of one chi	omos	ome							
	3. One pair of ho	mologues missing	4. One of	f homologues m	issing	,							
19.	One of the scien	tists who rediscove	ered Mendel's laws	in 1900 is									
		C			[]							
	1. Tschermak	2. Bateson	3. Morgan	4. Watson									
20.	Assertion (A): A	all plants of F ₁ gene	eration of Mendel's	monohybrid cı	oss lo	ook							
	alike. Reason(R	one dominant		[]									
	1) Both A and R are correct and R is the correct explanation of A.												
	2) Both A and R												
	3) A is correct, R	t is false											
	4) A is false, R is	s correct											
21.	In Mendel's dih	ybrid cross the pho	enotypic ratio is		[]							
	1. 7:1:1:7	2. 9:3:3:1	3. 1:1:1:1	4.1:7:7:1									

22.	Assertion (A):		[]									
	Reason(R): Son												
	1) Both A and R are correct and R is the correct explanation of A.												
	2) Both A and F	R are correct but R is r	not the correct explana	ation of A.									
	3) A is correct,												
	4) A is false, R												
23.	Genotypic ratio	[1										
	1. 1:2:1	2. 3:1	3. 1:1		4. 4:0								
24.	In Mendel's di	hybrid cross, genoty	pe that appears in m	aximum 1	number is	[]							
	1. YYRR		4. YyRr										
25.	1. YYRR 2. yyrr 3. YyRR 4. YyRr In Mendel's dihybrid cross what is the probability of F ₂ Phenotype of green,												
	round				[]							
	1. 3/16	2. 9/16	3.1	/16	4. 7/16								
26.	Assertion (A): Larger chromosomes generally possess more number of genes tha												
	shorter chromosomes												
	Reason(R): Ge	nes are arranged line	early on the chromos	somes.									
					[]							
	1) Both A and R are correct and R is the correct explanation of A.												
	2) Both A and R are correct but R is not the correct explanation of A.												
	3) A is correct,	R is false 4)	A is false, R is correct	t									
27.	Due to Linkage												
	1. Genetic varia												
	2. Genetic integ												
	3. Evolution wil												
	4. Always desirable characters appear in population												
28.	The distance between genes in a linkage group is represented graphically in												
	N				[]							
	1. Genetic maps	2. Chromo	osome maps 3. Karyo	type	4. Ideogra	.m							
29.	Mutations are	noticed by Hugo de \	Vries in		[]							
	1. Drosophila	2. Maize	3. Pisum	4. Evei	ning primr	rose							

	1. All F ₁ hybrids	show dominar	nt traits												
	2. Half of the F ₂	2. Half of the F ₂ generation shows dominant traits.													
	3. Half of the F ₂	generation sho	ows both traits												
	4. One fourth of	F ₂ generation	shows both tra	aits											
31.	In a population of true breeding plants of Antirrhinum white flowers are 144. The														
	number of red f	[]												
	1. 144	2. 288	3. 4	-32	4. Nil										
32.	Pleiotrophy is					[
	1. Different geno	otypes in differ	ent environme	ents.											
	2. Gene expressi	ng in many ph	enotypic chara	acters											
	3. A single gene	product expres	ssing in many	varieties		•									
	4. Many genes h														
33.	A mutation in a	pair of nucle	otides in a DN	NA is		[]								
	1. Deletion	2. Duplica	tion	3. Point m	utation	4. J	Inversion								
34.	A brown eyed n	A brown eyed man marries a blue eyed woman and they have eight children, all													
	brown eyed. Wl	nat are the ge	notypes of ch	ildren.(Brow	n eye (B) i	s domina	nt over								
	that for blue (b)	.)				[]								
	1. BB	2. Bb	3. b	b	4. Bb or	r BB									
35.	In garden pea Tallness (T) is dominant over dwarf (t). Green pods (G) are														
	dominant over	yellow (g).													
	What will be th	e appearance	of the offspri	ng of the cros	s TTGg x	ttGg									
						[]								
	1. All tall and gr	een													
	2. All tall and yellow														
	3. Many tall green and few tall yellow.														
	4. Some are dwarf green and some are tall yellow														
36.	Number of type	s of gametes t	hat can be pr	oduced by a p	plant with	Aa Bb go	enotype								
	are					[]								
	1. 2	2. 3	3.4		4. 1										
37.	Chromosome th	eory propose	d by			[]								
	1. Mendel	2. Sutton a	and Boveri	3. Morgan	2	4. de Vrie	S								
38.	Hugo de Vries o	bserved muta	ations in			[]								
32.] 33.] 34.] 35.]	1. Evening prima	rose	2. Lentil	3. Snapdra	gon	4. Pea									

True statement regarding co-dominance in *Lens culinaris* for seed coat is[

30.

39. Segregation of alleles takes place during

1. Cell division

2. Gamete formation

3. Crossing over of meiosis

4. G₂ phase

40. Assortment of genes is due to

.

[]

- 1. Zygotene
- 2. Pachytene
- 3. Diplotene
- 4. Diakinesis

Genetics

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	3	1	4	2	3	4	4	2	1	4	4	1	2	2	2	1	1	1	1
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
2	1	1	4	1	1	2	2	4	3	1	3	3	2	3	3	1	1	2	2