Electron Affinity

1.	The property of an element that can be obtained indirectly from Born-Habe							
	cycle is							
	1) Ionization potentia	al	2) Electron affinity					
	3) Electro negativity		4) Electropositive character					
2.	Which of the following is an endothermic process?							
	1) First electron affin	nity of chlorine	2) Second electron affinity of oxygen					
	3) First electron affin	nity of magnesium	4) Both 2 &3					
3.	In a period from left to right, electron affinity							
	1) Increases with exc	ceptions	2) Decreases					
	3) Remains constant		4) Increases regularly					
4.	. Configuration that shows the highest energy released when an electr							
added to the atom is								
	1) $1s^2 2s^2 2p^3$	2) $1s^2 2s^2 2p^4$	3) $1s^2 2s^2 2p^5$	4) 1s ² 2s ² 2p ⁶				
5. Electron affinity of Fluorine is less than that of Chlorine because								
	1) F has exceptional	y small size	2) Strong in electron repulsion in F					
	3) Lower Bond diss	ociation energy of F ₂	4) Both 1 &2					
6.	The chalcogen with	highest electron affin	ity is					
	1) O	2) S	3) Se	4) Te				
7.	The element with h	ighest electron affinity	y in the following					
	1) Fluorine	2) Oxygen	3) Nitrogen	4) Chlorine				

8.	Incorrect statement is							
	1) Alkali metals have the highest electron affinity.							
	2) Greater the nuclear charge, greater is the electron affinity.							
	3) The first electron affinity of Magnesium is positive.							
	4) Chlorine has highest electron affinity.							
9.	The electron affinity values of four eleme	ents A, B, C and D are	respectively –					
	135, -60, -200 and -348 kJ mol ⁻¹ . The	ne outer electronic con	nfiguration of					
	element B is							
	1) $3s^2 3p^5$ 2) $3s^2 3p^4$	3) $3s^2 3p^3$	4) $3s^2 3p^2$					
10.	In which of the following process maximum	m energy is released						
	1) O $(g) + e^- \rightarrow O^-(g)$	2) $O^{-}(g) + e^{-} \rightarrow O^{-2}(g)$						
	3) $S_{(g)} + e^- \rightarrow S^-(g)$	2) $O^{-}(g) + e^{-} \rightarrow O^{-2}(g)$ 4) $S^{-}(g) + e^{-} \rightarrow S^{-2}(g)$	1					
11.	Ionization energy of F^- is equal in magnitude with the electron affinity of							
	1) F ⁻ 2) F	3) <i>F</i> ⁺	4) F^{2+}					
12.	When an electron is added, energy is absorbed in which of the following?							
	1) P 2) N	3) Cl	4) S					
13.	In Pauling's scale electro negativity of el	ements is obtained fron	n					
	1) Electron affinity 2) Ionization potential	3) Both IP and EA 4)	Bond energies					
14.	Pauling's electro negativity values for elem	nents are useful in pred	icting					
	1) Polarity of the molecules	2) Position in the periodic table						
	3) Geometry of compounds	4) All of these						

15.	Electro negativity of a monovalent element is the average of its ionization energy and electron affinity according to							
	1) Pauling	2) Hund	3) Germer	4) Mulliken				
16.	Correct relation ar	mong X_A , X_B and Δ .	and \triangle . Where $\mathbf{X}_{\mathbf{A}}$ and $\mathbf{X}_{\mathbf{B}}$ are the electr					
	negativities of eleme	ents A and B.						
	1) $X_A + X_B = 0.208$	$\sqrt{\Delta}$	2) $\sqrt{X_A - X_B} = 0.208 \text{ x } \Delta$					
	3) $X_A - X_B = 0.208$	$\sqrt{\Delta}$	4) $X_A - X_B = \sqrt{0.20}$	$\overline{08 \times \Delta}$				
17.	Reference element f	or Pauling's electro ne	egativity is	*				
	1) H	2) C	3) Cl	4) He				
18.	The electro negativ	ity values in Mulliken	scale is how many	times to those ir				
	Pauling scale		10					
	1) 0.28	2) 2	3) 2.8	4) 28				
19.	19. Electro negativity on Mulliken scale is limited to							
	1) Monovalent atoms	sonly	2) Bivalent atoms only					
	3) Both 1& 2	75,	4) Multivalent atoms only					
20.	0. If I and E are ionization energy and electron affinity of an element in kJmole							
	electro negativity is	given as						
	1) 2.8(I+E)	$2) \frac{I+E}{5.6}$	$3) \frac{I+E}{2.8}$	$4) \frac{I+E}{544}$				
21.	In a period electro negativity is lowest for							
	1) Chalcoge	2) Alkali metal	3) Inert gas	4) Halogen				
22.	Elements with high	electro negativity are	generally					
	1) Metals	2) Metalloids	3) Nonmetals	4) Soft solids				

23. The correct order of electron affinity of the elements of oxygen family in the

periodic table is

	1) $O > S > Se$	2) S > O > Se	3) $S > Se > O$	4) Se > O > S					
24.	Increasing order of	ncreasing order of the electro negativity of elements in the following							
	1) C, N, Si, P	2) N, Si, C, P	3) Si, P, C, N	4) P, Si, N, C					
25.	Exothermic process	s in the following is	S						
	1) Na $(g) \rightarrow Na^+(g)$	+ e	2) $O^{-}(g) + e \rightarrow O^{-}$	2) $O^{-}(g) + e \rightarrow O^{-2}(g)$					
	3) $N^{-2}(g) + e \rightarrow N^{-1}$	3 _(g)	4) O (g) + e \rightarrow O	4) $O_{(g)} + e \rightarrow O^{-}_{(g)}$					
26.	The bond energies	of H - H, X-X and	H-X are 104, 60 and	102 k cal/mole. The					
	electro negativity o	f Hydrogen is 2.1.	Then the electro negat	tivity of "X" is					
	1) 2.5	2) 3.5	3) 3.0	4) 4.0					
	Hint - $X_A - X_B = 0.20$	$8\sqrt{\Delta}$	$\Delta = \mathbf{E_{A-B}} - 1/2$	$[\mathbf{E_{A-A}} + \mathbf{E_{B-B}}]$					
27. The ionization potential and electron affinity of an element "X" are 2									
	112 kcal/mole. Then the electro negativity of "X" according to Mulliken scale is								
	1) 4.0	2) 3.5	3) 2.8	4) 3.0					
	Hint - $EN = \frac{(IE \ in \ kcals / mole) + (EA \ in \ kcals / mole)}{129}$								
28.	If the E.N value	of chlorine in the	Pauling scale is 3.0	, then the value in					
	mulliken scale will	be							
	1) 11.2	2) 22.4	3) 8.4	4) 3.0					
Hint- Mulliken EN value=2.8 X Pauling EN values									
	1.								

KEY

1) 2	2)4	3) 1	4) 3	5)4	6) 2	7) 4	8) 1	9) 3	10) 3
11) 2	12) 2	13) 4	14) 1	15) 4	16) 3	17) 1	18) 3	19) 1	20) 4
21) 2	22) 3	23) 3	24) 3	25) 4	26) 3	27) 4	28)3	CO	•
						il	2),		
				>	JC				
			N.	10)				
		N	5						
	N								
N									