www.sakshieducation.com

 Chemical Equilibrium - 2

 Chemical Equilibrium - 2}

1. The gaseous reaction $\mathbf{A}+\mathbf{B} \rightleftarrows \mathbf{C}+\mathbf{D}+$ heat has reached equilibrium. It is possible to make the reaction to proceed forward
1) By adding more of C
2) By adding more of D
3) By raising the temperature of the system
4) By lowering the temperature

Hint: \because it is an exothermic reaction.
2. Given the reaction $2 X(g)+2 Y(g) \rightleftarrows Z(g)+80 k . c a l s$, which combination of pressure and temperature gives the highest yield of Z at equilibrium

1) 1000 atm and $500^{\circ} \mathrm{C}$
2) 500 atm and $500^{\circ} \mathrm{C}$
3) 1000 atm and $100^{\circ} \mathrm{C}$
4) 500 atm and $100^{0} \mathrm{C}$

Hint: Forward reaction is favored by Low temperature \because it is an exothermic reaction and High ' P ' as no. of moles decreases.
3. In which of the equilibrium, the position of the equilibrium shifts towards products, if the total pressure is increased
A) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})$
B) $\mathrm{I}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$
C) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}(\mathrm{g})$
D) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g})$

1) B
2) C
3) A
4) D

Hint: Increase of pressure shifts the reaction in the direction of decrease in moles.
4. The degree of dissociation of PCl_{5}

1) Increases with increasing pressure
2) Decreases with increasing pressure
3) No effect on change in pressure
4) Decreases with decreasing pressure

Hint: Dissociation of PCl_{5} involves increase of moles
5. In which of the following systems, doubling the volume of the container causes a shift to right?

1) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{g})$
2) $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{CO}_{2}(\mathrm{~g})$
3) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})$
4) $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftarrows \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
6. In the dissociation of CaCO_{3} in a closed vessel, the forward reaction is favoured by
1) Adding of more CaCO_{3}
2) Removal of some CaO
3) Increasing the pressure
4) Decreasing the pressure by removing some CO_{2} from the equilibrium mixture

Hint: Removal of product favours the forward reaction. Addition and removal of a solid has no effect.
7. In the reaction $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftarrows \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ on doubling the concentration of ammonia the equilibrium concentration of $\mathbf{H}_{2} \mathbf{S}$

1) Is reduced to half its initial value
2) Increases by two times
3) Remains unchanged
4) Increases by four times

Hint: Increase of products concentration favours the backward reaction
8. In a gaseous reaction $2 \mathrm{~A} \rightleftarrows 3 \mathrm{~B}$ on doubling the volume of container the equilibrium amount of the product

1) Increases
2) Decreases
3) Remains same
4) Data Insufficient

Hint: Doubling the volume of container, Pressure decreases. Decrease of pressure shifts the reaction in the direction of increase in moles.
9. Manufacture of ammonia by Haber's process involves the reaction $\mathbf{N}_{2}+\mathbf{3 H} \mathbf{2}$ $\rightleftarrows 2 \mathrm{NH}_{3}=-22.4 \mathrm{k}$ cals. The effect of increase of temperature on the equilibrium is

1) Equilibrium is shifted to the right
2) Equilibrium is unaffected
3) Equilibrium is shifted to the left
4) Equilibrium is shifted first to right then to left

Hint: Increase of pressure shifts the reaction in the direction of decrease in moles.
10. Backward reaction is favoured by increase in the pressure of the equilibrium

1) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftarrows 2 \mathrm{SO}_{3}$
2) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftarrows 2 \mathrm{NO}$
3) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftarrows 2 \mathrm{NH}_{3}$
4) $\mathrm{PCl}_{5} \rightleftarrows \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$

Hint: Increase of pressure shifts the reaction in the direction of decrease in moles.
11. In the manufacture of NH_{3}, which are favourable conditions?

1) High pressure and low temperature
2) High pressure and high temperature
3) Low pressure and low temperature
4) Low pressure and high temperature

Hint: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftarrows 2 \mathrm{NH}_{3} \Delta \mathrm{H}=-92 \mathrm{Kj} /$ mole .Forward reaction is exothermic and involve decrease of moles.
12. In which of the following equilibrium reaction the equilibrium would shift to the right, if pressure is increased

1) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftarrows 2 \mathrm{SO}_{3}$
2) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftarrows 2 \mathrm{HI}$
3) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightleftarrows 2 \mathrm{HCl}$
4) $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftarrows 2 \mathrm{NO}_{2}$

Hint: Ans; 1. \because No. of moles decreases in forward reactin.
13. The equilibrium concentration of $\mathrm{C}_{2} \mathrm{H}_{4}$ in the following reaction can be increased by $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathbf{C}_{2} \mathbf{H}_{6}(\mathrm{~g}) ; \Delta \mathrm{H}=-31.7 \mathrm{~K}$.Cal

1) Removal of $\mathrm{C}_{2} \mathrm{H}_{6}$
2) Addition of H_{2}
3) Increase in temperature
4) Increase in pressure
14. Ammonium chloride dissolves in water with the absorption of heat. Which of the following is true?
15. The solubility of ammonium chloride decreases with increase in temperature
16. The solubility of ammonium chloride increases with increase in temperature
17. At higher temperature, ammonium chloride in solution exists as ammonia and Hydrochloric acid
18. At lower temperature ammonîum chloride in solution is present in the molecular form

Hint: As dissolution is endothermic, high temperature favours solubility.
15. For the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows \mathbf{2 H I}(\mathrm{g})$ at 721 K , the value of equilibrium constant is 50 . The value of K_{p} under the same conditions will be

1) 0.02
2) 0.2
3) 50
4) $50 / \mathrm{RT}$

Hint; $K_{P}=K_{C}$ as $\Delta n=0$.
16. The effect of increasing the pressure on the following gaseous equilibrium $2 \mathrm{~A}+$ $\mathbf{3 B} \rightleftarrows \mathbf{3 C}+\mathbf{2 D}$ is

1) Favours forward reaction
2) Favours backward reaction
3) No effect
4) Favours for forward and backward reaction
17. Cosider the reactions
i) $P C I_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$,ii) $N_{2} O_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$

www.sakshieducation.com

The addition of an inert gas at constant volume:
1). Will increase the dissociation of as well as

2). Will reduce the dissociation of as well as
3). Will increase the dissociation of and step up the formation of
4). Will not distrub the equilibrium of the reactions

Hint: At constant volume addition of inert gas not disturb equilibrium state.
18. In a reaction $A_{2}(g)+4 B_{2}(g) \rightleftarrows 2 A_{4}(g) ; \Delta H<0$, the formation of $A B_{4}(g)$ will be favoured at

1) Low temperature and high pressure
2) High temperatue and low pressure
3) Low temperature and low pressure
4) High temperature and high pressure
19. In the equilibrium $4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+3 \mathrm{Fe}(\mathrm{s}) \rightleftarrows \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$ the yield of H_{2} can be increased by
1) Increasing the pressure
2) Passing more steam
3) Increasing the mass of iron
4) Decreasing the pressure

20. LeChatelier's principle is applicable to

1) Chemical equilibria only
2) Physical equilibria only
3) Both 1 \& 2
4) Neither 1 nor 2
21. The molar concentrations of A, B and C at equilibrium for the reaction $A+2 B \rightleftarrows 3 C$ are 2,3 and 4 moles/ lit respectively. Its K_{c} is
1) 2
2) 3.56
3) 0.2
4) 0.026
Solution: $K_{C}=\frac{[C]^{3}}{[A][B]^{2}}$
22. The equilibrium constant K_{c} of a reversible reaction is 10 . The rate constant for the reverse reaction is 2.8 . What is the rate constant for the forward reaction?
1) 0.28
2) 28
3) 0.028
4) 280

Solution: $\mathrm{K}_{\mathrm{C}}=\mathrm{K}_{\mathrm{f}} / \mathrm{K}_{\mathrm{b}}$
23. The equilibrium constants for the reactions
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}(\mathrm{g})$ and
$\mathrm{NO}(\mathrm{g})+\mathbf{1} / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{NO}_{2}(\mathrm{~g})$ are K_{1} and K_{2} respectively. Then the equilibrium constant for the reaction $\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longleftrightarrow \mathbf{2} \mathrm{NO}_{2}(\mathrm{~g})$ is

1) K_{1} / K_{2}
2) $K_{1}{ }^{2}-K_{2}^{2}$
3) $K_{1} K_{2}^{2}$
4) $K_{1 /} K_{2}{ }^{2}$

Solution; Multiply the second equation with (2) and then add both.
24. For the reaction $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{CO}(\mathrm{g})$, the partial pressures of CO_{2} and $C O$ are 4.0 and 4.0 respectively at equilibrium, what is the value of K_{p} for this reaction

1) 0.5
2) 1.0
3) 4.0
4) 32
Solution: $\quad K_{P}=\frac{P_{c o}^{2}}{P_{C O_{2}}}$
25. The $K_{\mathbf{c}}$ for the reaction $A+B \rightleftarrows C$ is 4 and $K_{\mathbf{C}}$ for $2 A+D \rightleftarrows C$ is 6 the value of
K_{c} for $C+D \rightleftarrows 2 B$ is
1) 0.67
2) 0.375
3) 2.7
4) 1.5

Solution; Equation2- 2 X Equation1. i.e. $\mathrm{K}_{\mathrm{C}}=\mathrm{K}_{2} / \mathrm{K}_{1}{ }^{2}=6 / 4^{2}=6 / 16=0.375$
26. The equilibrium constant for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{g})$ is 81 at a certain temperature. If the concentrations of \mathbf{H}_{2} and I_{2} are 3 mole / lit each at equilibrium, the equilibrium concentration of HI is

1) 3 mole / lit
2) 27 mole / lit
3) 9 mole / lit
4) 13.5 mole / lit

Solution; $\mathrm{K}_{\mathrm{C}}=[\mathrm{HI}]^{2} /\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]$
27. 4.5 moles each of hydrogen and iodine are heated in a sealed 10 litre vessel. At equilibrium 3 moles of hydrogen iodide was found. The equilibrium constant for $\mathbf{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{g})$ is

1) 1
2) 10
3) 5
4) 0.33

Solution

$$
H_{2}+I_{2} \Leftrightarrow 2 H I
$$

Initial	4.5	4.5	O
Reacted \& formed	1.5	1.5	3.0
At equilibrium	$3 / 10$	$3 / 10$	$3 / 10$

$\mathrm{K}_{\mathrm{C}}=[\mathrm{HI}]^{2} /\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]=(3 / 10) \times(3 / 10) /(3 / 10)=1$
28. 4 moles of HI is taken in a lit closed vessel and heated to equilibrium. At equilibrium, the concentration of \mathbf{H}_{2} is $1 \mathrm{~mol}^{\mathbf{~ l i t}}{ }^{-1}$. The equilibrium constant is

1) 4
2) 0.5
3) 2
4) 0.25

Solution:

$$
2 \mathrm{HI} \Leftrightarrow H_{2}+I_{2}
$$

Initial:

400
At equilibrium: $4-2 x \quad x \quad x \quad$ But given at equilibrium concentration of H_{2} is $1 \mathrm{~mol}^{-1 t}{ }^{-1}$ i.e. $\mathrm{X}=1 \quad \mathrm{~K}_{\mathrm{C}=}=\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right] /[\mathrm{HI}]^{2}=1 \mathrm{X} 1 / 2^{2}=1 / 4=0.25$
29. 9.2 gm of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is taken in a closed one litre vessel and heated till the following equilibrium is reached $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftarrows \mathbf{2} \mathrm{NO}_{2}(\mathrm{~g})$. At equilibrium $\mathbf{5 0 \%}$ of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is dissociated. What is the equilibrium constant (in mole lit $^{-1}$) (M.wt. of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 92)

1) 0.1
2) 0.2
3) 0.4
4) 2

Solution: moles of $\mathrm{N}_{2} \mathrm{O}_{4}=9.2 / 92=0.1$

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g}
$$

$\begin{array}{lll}\text { Initial } 0.1 & 0\end{array}$
Reacted \& Formed $0.05 \quad 0.1$
At equilibrium: 0.050 .1

$$
\mathrm{K}_{\mathrm{C}=}\left[\mathrm{NO}_{2}\right]^{2} /\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=[0.1]^{2} /[0.05]=0.2
$$

30. 1 mole of $\mathbf{A}(\mathrm{g})$ is heated to $300^{0} \mathbf{C}$ in closed one litre vessel till the following equilibrium is reached $A(g) \rightleftarrows B(g)$ The equilibrium constant for the reaction at $300^{0} \mathrm{C}$ is 4 . What is the concentration of $\mathrm{B}\left(\mathrm{in}_{\mathrm{mol}}\right.$. lit ${ }^{-1}$) at equilibrium?
1) 0.2
2) 0.6
3) 0.8
4) 0.1

Solution: $\quad A(g) \rightleftarrows B(g)$
Initial 10
Reacted \& Formed x
At equilibrium: 1-X X
$\mathrm{K}_{\mathrm{C}}=[\mathrm{B}] /[\mathrm{A}], \quad 4=\mathrm{x} / 1-\mathrm{x}$
$4[1-\mathrm{x}]=\mathrm{x}, 5 \mathrm{x}=4$ and $\mathrm{x}=4 / 5=0.8$
31. PCl_{5} was taken at 2 atm in a closed vessel at $154^{\circ} \mathrm{C}$. Keeping the temperature constant $\mathrm{PCl}_{5} \leftrightarrows \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$ equilibrium is established when $\mathbf{5 0 \%}$ of PCl_{5} decomposes. The $\mathbf{K}_{\mathbf{p}}$ for the equilibrium is

1) 1 atm
2) 3 atm
3) 1.5 atm
4) 0.5 atm

Solution: $\quad \mathrm{PCl}_{5} \rightleftarrows \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
$1 \mathrm{~mol} \quad 0 \mathrm{~mol} \quad 0 \mathrm{~mol}$ at start
$0.5 \mathrm{~mol} \quad 0.5 \mathrm{~mol} \quad 0.5 \mathrm{~mol}$ at equilibrium
The pressure at equilibrium $=2 \times \frac{1.5}{1}=3 \mathrm{~atm}$
The partial pressures; ${ }^{\mathrm{PCCl}_{3}}=3 \times \frac{0.5}{1.5}=1 \mathrm{~atm}, \quad \mathrm{P}_{\mathrm{PCC}_{3}}=3 \times \frac{0.5}{1.5}=1 \mathrm{~atm}$
and

$$
\mathrm{P}_{\mathrm{Cl}_{2}}=3 \times \frac{0.5}{1.5}=1 \mathrm{~atm}
$$

The equilibrium constant, $\quad \mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{PCl}_{3}} \mathrm{P}_{\mathrm{Cl}_{2}}}{\mathrm{P}_{\mathrm{PCl}_{5}}}=\frac{1 \times 1}{1}=1 \mathrm{~atm}$.
32. The reaction was started with 0.1 M each of CO and $\mathrm{H}_{2} \mathrm{O}$ at $800 \mathrm{~K} . \mathrm{K}_{\mathrm{c}}$ for the reaction $\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftarrows \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}$, at 800 K is 4.24. What is the equilibrium concentration of the lightest gas?

1) 0.933 M
2) 0.067 M
3) 1.067 M
4) 0.1 M

Solution:

$$
\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftarrows \mathrm{CO}_{2}(\mathrm{~g})^{2}+\mathrm{H}_{2}(\mathrm{~g})
$$

$\begin{array}{lllll}0.1 & 0.1 & 0 & 0 & \text { at start }\end{array}$
$0.1-\mathrm{x} \quad 0.1-\mathrm{x} \quad \mathrm{x} \quad \mathrm{x}$ at equilibrium

The equilibrium constant K_{C} is given as, $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{\mathrm{x}^{2}}{(0.1-\mathrm{x})^{2}}=4.24$
$3.24 x^{2}-0.848 \mathrm{x}+0.0424=0,3.059 \mathrm{x}=0.2059$. Concentration of $\mathrm{H}_{2}=\mathrm{x}=$ 0.067 M .
33. K_{p} for the reaction, $\mathrm{NH}_{4} \mathrm{HS}_{(\mathrm{s})} \rightleftarrows \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$, at certain temperature is $\mathbf{4} \mathbf{b a r}^{\mathbf{2}}$. The equilibrium pressure of mixture is
1)16bar
2)8bar
3) 2 bar
4) 4bar

Solution: Equilibrium constant, $\mathrm{K}_{\mathrm{P}}=\mathrm{P}_{\mathrm{NH} 3} \mathrm{X}$ P of $\mathrm{H}_{2} \mathrm{~S}$
Partial pressures are given as, $\mathrm{P}_{\mathrm{NH} 3}=\mathrm{P}_{\mathrm{H} 2 \mathrm{~S}}=\sqrt{ } 9=3$ bar
Total pressure at equilibrium is obtained using Dalton's law of partial pressures as, $\mathrm{P}_{\mathrm{NH} 3}+\mathrm{P}_{\mathrm{H} 2 \mathrm{~S}}=3+3=6 \mathrm{bar}$.
34. Calculate the ratio of pressures of CO_{2} gas and CO gas at equilibrium in the reaction $\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{C}_{(\mathrm{s})} \rightleftarrows 2 \mathrm{CO}_{(\mathrm{g})}$, if K_{p} is 3 bar at 900 K and initial pressure of CO_{2} is $\mathbf{0 . 4 8}$ bar.
1)1.2
2)0.75
3)0.557
4) 1.732

Solution:

$$
\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{C}_{(\mathrm{s})} \rightleftarrows 2 \mathrm{CO}_{(\mathrm{g})}
$$

0.48 bar $0 \quad 0 \quad$ at start
$0.48-\mathrm{x} \quad 0 \quad 2 \mathrm{x} \quad$ at equilibrium

$$
\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{CO}}^{2}}{\mathrm{pCO}_{2}}=\frac{(2 \mathrm{x})^{2}}{(0.48-\mathrm{x})}=3 \Rightarrow \frac{2 \mathrm{x}}{0.48-\mathrm{x}}=1.732, \frac{\mathrm{P}_{\mathrm{CO}_{2}}}{\mathrm{P}_{\mathrm{CO}}}=\frac{0.48-\mathrm{x}}{2 \mathrm{x}}=\frac{1}{1.732}=0.557
$$

35. For the cyclic trimerisation of acetylene to give one mole of benzene, $K_{c}=64$ $\mathbf{L}^{2} \mathbf{m o l}^{-2}$. If the equilibrium concentration of benzene is $1.0 \mathrm{~mol} \mathbf{L}^{-1}$, The equilibrium concentration of acetylene is
1) 0.25 M
2) 0.5 M
3) 4 M
4) 0.05 M

Solution: The equilibrium is, $3 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~g} \rightleftarrows \mathrm{C}_{6} \mathrm{H}_{6(1)}$

$$
\mathrm{K}_{\mathrm{C}}=\left[\mathrm{C}_{6} \mathrm{H}_{6}\right] /\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]^{3}, \quad\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]^{3}=\left[\mathrm{C}_{6} \mathrm{H}_{6} / / \mathrm{K}_{\mathrm{C}}=1 / 64\right.
$$

Equilibrium concentration of acetylene, $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=0.25 \mathrm{~mol} \mathrm{~L}^{-1}$.
36. At $1000 \mathrm{~K}, K_{p}=1.0 \times 10^{-2} \mathrm{~atm}$ for the reaction, $2 \mathrm{NOCl}_{(\mathrm{g})} \rightleftarrows 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$. The value of K_{c} at the same temperature is

1) $82.1 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$
2) $82.1+10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$
3) $10^{-2} / 82.1 \mathrm{~mol} \mathrm{~L}-1$
4) $82.1 / 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$

Solution: Equilibrium constants are related as,

$$
\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}} /(\mathrm{RT})^{\lambda_{\mathrm{n}}} \Delta \mathrm{n} .=2+1-(2)=1 \text { and } \quad \mathrm{R}=0.0821 \mathrm{~L}^{-a t m ~} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Equilibrium constant, $\mathrm{K}_{\mathrm{C}}=1.0 \times 10^{-2} /(0.0821 \times 1000) \mathrm{mol} \mathrm{L}^{-1}$.
37. For the equilibrium, $\mathbf{2 S O}_{3}(\mathrm{~g}) \rightleftarrows \mathbf{2 S O}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$, the partial pressures of
$\mathrm{SO}_{3}, \mathrm{SO}_{2}$ and $\mathrm{O}_{\mathbf{2}}$ gases, at 650 K are respectively $0.3 \mathrm{bar}, \mathbf{0 . 6}$ bar and 0.4 bar. If the moles of both the oxides of sulphur are so adjusted as equal, the partial pressure of O_{2} will be

1) 0.6bar
2) 1.6 bar
3) 0.4bar
4)0.1bar

Solution: The equilibrium given as, $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftarrows 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$,
 on adjustment, K_{p} does not change, $1.6 \mathrm{bar}=\mathrm{x}^{2} . \mathrm{P}_{\mathrm{O} 2} / \mathrm{x}^{2}$. Partial pressure of oxygen $=1.6$ bar.
38. If $0.5 \mathbf{~ m o l}$ of $\mathbf{C O}, \mathbf{0 . 2} \mathbf{~ m o l ~ o f ~} \mathbf{C l}_{\mathbf{2}}$ and $\mathbf{0 . 2} \mathbf{~ m o l}$ of COCl_{2} are present at equilibrium in a 500 ml of closed vessel at certain temperature. The $\mathbf{K}_{\mathbf{c}}$ for the reaction,

$$
\mathrm{CO}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftarrows \mathrm{COCl}_{2(\mathrm{~g})} \text { is }
$$

1) mole^{-1}
2) $1 \mathrm{~L} \mathrm{~mol}^{-1}$
3) $1 \mathrm{~mole}^{-1}$
4) $2 \mathrm{~L} \mathrm{~mol}^{-1}$

Solution: $[\mathrm{CO}]=\mathrm{moles} / \mathrm{v} . \mathrm{in} . \mathrm{L}=0.5 / 0.5=1 \mathrm{~mol} \mathrm{~L}^{-1},\left[\mathrm{Cl}_{2}\right]=0.2 / 0.5=0.4 \mathrm{~mol} \mathrm{~L}^{-1}$ and $\left[\mathrm{COCl}_{2}\right]=0.2 / 0.5=0.4 \mathrm{~mol} \mathrm{~L}^{-1}$.

Equilibrium constant, $\mathrm{K}_{\mathrm{C}}=\left[\mathrm{COCl}_{2}\right] /[\mathrm{CO}]\left[\mathrm{Cl}_{2}\right]=1 \mathrm{~L} \mathrm{~mol}^{-1}$.
39. K_{c} for the reaction $2 X \rightleftarrows Y+Z$ is 2×10^{-3} at a given time the composition of reaction mixture $[\mathrm{X}]=[\mathrm{Y}]=[\mathrm{Z}]=2.8 \times \mathbf{1 0}^{-4} \mathrm{M}$. In what direction, the reaction will proceed?

1) Forward
2) Either forward or backward
3) Backward
4) Neither forward nor backward

Solution: Reaction quotient Q is given as,

$$
\mathrm{Q}=\frac{[\mathrm{Y}[\mathrm{Z}]}{[\mathrm{X}]^{2}}, \mathrm{Q}=\frac{2.8 \times 10^{-4} \times 2.8 \times 10^{-4}}{\left(2.8 \times 10^{-4}\right)^{2}}=1
$$

www.sakshieducation.com

Since $\mathrm{Q}>\mathrm{K}$, the reaction proceeds in backward direction.
40. What is the extent of dissociation if the equilibrium pressure p for the system $\mathbf{P C l}_{\mathbf{5}} \rightleftarrows \mathbf{P C l}_{\mathbf{3}}+\mathbf{C l}_{\mathbf{2}}$ are numerically $\mathbf{3}$ times to its $\mathbf{K}_{\mathbf{p}}$.

1) 0.5
2) 0.866
3) 0.25
4)1.0

Solution: $\quad \mathrm{PCl}_{5} \rightleftarrows \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$

1	0	0 at start
$1-\mathrm{x}$	x	x at equilibrium

Total moles at equilibrium (if x is extent of dissociation) $=1-x+x+x=1+x$
Partial pressure of $\mathrm{PCl}_{5}, \mathrm{P}_{\mathrm{PCl}_{5}}=\frac{1-\mathrm{x}}{1+\mathrm{x}} \mathrm{p}$
Similarly, $\left({ }_{\mathrm{PCCl}_{1}}=\frac{\mathrm{x}}{1+\mathrm{x}} \mathrm{p}\right)$ and $\mathrm{P}_{\mathrm{PC}_{2}}=\frac{\mathrm{x}}{1+\mathrm{x}} \mathrm{p}$
Equilibrium constant,

$$
\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{PCl}_{3}} \mathrm{P}_{\mathrm{Cl}_{2}}}{\mathrm{P}_{\mathrm{PCl}_{5}}}
$$

Substituting the values,
$\mathrm{K}_{\mathrm{p}}=\frac{\left(\frac{\mathrm{xp}}{1+\mathrm{x}}\right)\left(\frac{\mathrm{xp}}{1+\mathrm{x}}\right)}{\frac{(1-\mathrm{x}) \mathrm{p}}{1+\mathrm{x}}}=\frac{\mathrm{x}^{2} \mathrm{p}}{(1-\mathrm{x})^{2}}$
$\frac{p}{3}=\frac{x^{2} p}{1-x^{2}} \rightarrow X=0.5$ i.e Extent of dissociation of $\mathrm{PCl}_{5}=0.5$.
Assertion and Reason Type Questions

1) Both $A \& R$ are true, R is the correct explanation of A.
2) Both $A \& R$ are true, R is not correct explanation of A.
3) A is true, R is false.
4) Both A and R are true.
41. A: Introduction of catalyst does not affect position of equilibrium.

R: For a reversible reaction, presence of a catalyst influences both forward \&
backward reactions to same extent.
42. $\mathrm{A}:$ For $\mathrm{Zn}_{(\mathrm{s})}+\mathrm{Cu}^{+\mathbf{2}_{(\mathrm{aq})}} \rightleftarrows \mathbf{Z n}^{+\mathbf{2}_{(\mathrm{aq})}}+\mathbf{C u}(\mathrm{s}), \Delta \mathbf{G}=0$, but $\mathrm{K}_{\mathrm{C}}=10^{37}$

R: For a process under equilibrium Gibb energy change is zero, but as this process proceeds more towards right if $\mathbf{K}_{\mathbf{C}}>1$.
43. A : For $\mathbf{N}_{\mathbf{2}} \mathbf{+ 3 \mathbf { H } _ { 2 }} \rightleftarrows \mathbf{2 N H}, \Delta H=-\mathbf{Q} \mathbf{K J}$, low pressure yields more Ammonia.

R: According to Lechatlier's principle, increase of pressure shifts equilibrium in a direction that proceeds with increase in number of moles.
44. A: The degree of decomposition of PCl_{5} is less at high pressures.
R : In a reversible reaction, on increasing the pressure the equilibrium shifts in the direction in which decrease in volume takes place.
45. $\quad \mathrm{A}: \mathbf{2 S O}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows \mathbf{S O}_{3}(\mathrm{~g})$. In this equilibrium system, the yield of SO_{3} is not altered in the presence of a catalyst.

R: A catalyst does not change the position of equilibrium.
46. A: The hydrolysis of an ester in acidic medium does not change with pressure.

R: Pressure does not show effect on equilibrium reactions taking place in solution.
47. If the degree of dissociation of PCl_{5} in the reaction $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftarrows \mathrm{PCl}_{3}(\mathrm{~g})+$ $\mathrm{Cl}_{2}(\mathrm{~g})$ at equilibrium is 0.2 and if the initial number of moles of $\mathbf{P C l}_{5}$ is one, the total number of moles present in the gaseous mixture at equilibrium is

1) 2.8
2) 1.2
3) 1.4
4) 1.6

Solution:

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftarrows \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

1	0	0	at start
0.2	0.2	0.2	reactor formed at equilibrium
0.8	0.2	0.2	present at equilibrium

The total moles at equilibrium $=0.8+0.2+0.2=1.2$
48. The Kp value for $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{SO}_{3}(\mathrm{~g})$ is $5.0 \mathrm{~atm}^{-1}$. What is the equilibrium pressure of O_{2} if the equilibrium pressures of SO_{2} and SO_{3} are equal

1) 0.2 atm
2) 0.3 atm
3) 0.4 atm
4) 0.1 atm

Solution: $\mathrm{K}_{\mathrm{P}}=1 / \mathrm{P}_{\mathrm{O} 2}$ as the equilibrium pressures of SO_{2} and SO_{3} are equal. Thus $\mathrm{P}_{\mathrm{O} 2}=1 / \mathrm{K}_{\mathrm{P}}=1 / 5=0.2$
49. One mole of ethyl alcohol and one mole of acetic acid are mixed. At equilibrium 0.666 moles of ester is present. The value of equilibrium constant is

1) $1 / 2$
2) $1 / 4$
3) 2
4) 4

Solution: $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \rightleftarrows \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

1.0	1.0	0	0
at start			
$1-0.666$	$1-0.666$	0.666	0.666 at equilibrium

$$
\mathrm{K}_{\mathrm{C}}=(0.666 \times 0.666) /(0.334 \times 0.334)=4
$$

50. In the equilibrium $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftarrows \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}$ (g) If the equilibrium pressure is 2 atm at $80^{0} \mathrm{C} . \mathrm{K}_{\mathrm{p}}$ for the reaction is
1) 1 atm
2) 2 atm
3) $11 \mathrm{~atm}^{2}$
4) $4 \mathrm{~atm}^{2}$

Solution: $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \longleftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}), \mathrm{P}$ Of $\mathrm{NH}_{3}(\mathrm{~g})+$ Pof $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})=2$, P Of $\mathrm{NH}_{3}(\mathrm{~g})=\operatorname{Pof} \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})=1$

$$
\mathrm{K}_{\mathrm{P}}=\mathrm{P} \text { of } \mathrm{NH}_{3}(\mathrm{~g}) X \text { Pof } \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})=1 \mathrm{X} 1=1 \mathrm{~atm}^{2}
$$

KEY

1) 4	2) 3	3) 3	4) 2	5) 4	6) 4	7) 1		9) 3
10) 4	11) 1	12) 1	13) 3	14) 2	15) 3	16)3	17) 4	18)1
19)2	20) 3	21) 2	22) 2	23) 3	24)	25) 2	26) 2	27)1
28)4	29)2	30) 3	31)1	32)2	33)4	34)3	35)1	36) 4
37) 2	38)2	39)3		41) 1	42) 1	43) 4	44) 1	45) 1
46) 1	47) 2	48) 1	49) 4	50) 3				

