Atomic \& Molecular Weights, Mole Concept and Equivalent

Weights

1. Molecular mass of Silver $(\mathrm{Z}=47)$ is
1) 47 amu
2) 47 gm
3)108amu
3) 108 gm
2. Molar mass of Sulphur is
1) 32 amu
2) 32 gm
3) 256 amu
4) 256 gm
3. The number of water molecules in a drop of water weighing 5 mg is
1) 6.023×10^{22}
2) 3.0125×10^{21}
3) 1.67×10^{20}
4) 1.67×10^{21}
4. The mass of 1.5×10^{19} molecules of a substance is 2 mg . The molar mass of the substance is
1) 20 g
2) 40 g
3) 80 g
4) 80 a.m.u.
5. The number of nitrogen molecules present in 1c.c of gas at NTP is
1) 2.67×10^{22}
2) 2.67×10^{21}
3) 2.67×10^{20}
4) 2.67×10^{19}
6. The density of water is $1 \mathrm{~g} / \mathrm{mL}$. Assuming that there are no interspaces between water molecules in liquid water, the volume of a water molecule is
1) $1.5 \times 10^{-23} \mathrm{ml}$
2) $6 \times 10^{-23} \mathrm{ml}$
3) $3 \times 10^{-23} \mathrm{ml}$
4) $3 \times 10^{-22} \mathrm{ml}$
7. The equivalent weight of glucose in the reaction $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow \mathbf{6 C O} 2+6 \mathrm{H}_{2} \mathrm{O}$ is $[\mathrm{M}=$ mol. wt]
1) M
2) $M / 6$
3) $\mathrm{M} / 12$
4) $\mathrm{M} / 24$
8. A gaseous mixture contains oxygen and nitrogen in the ratio $1: 4$ by weight. The ratio of their number of molecules is
1) $1: 4$
2) $4: 1$
3) $7: 32$
4) $3: 16$
9. The number of oxygen atoms present in 50 g of calcium carbonate is
1) 6.023×10^{23}
2) 30.1×10^{23}
3) 9.035×10^{23}
4) 1.206×10^{24}
10. The mixture containing the same number of molecules as that of 14 g of CO is
1) 14 g of nitrogen +16 g of oxygen
2) 7 g of nitrogen +16 g of oxygen
3) 14 g of nitrogen +8 g of oxygen
4) 7 g of nitrogen +8 g of oxygen
11. 3 gm of carbon is completely burnt to get carbon dioxide. The number of molecules of CO_{2} obtained is
1) 6×10^{23}
2) 3×10^{23}
3) 1.5×10^{23}
4) 7.5×10^{22}
12. Which of the following contains the maximum number of atoms?
1) 10 g of CaCO_{3}
2) 4 g of hydrogen
3) 9 g of $\mathrm{NH}_{4} \mathrm{NO}_{3}$
4) 1.8 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
13. Which contains more number of molecules?
1) $1 g$ of carbon dioxide
2) $4 g$ of hydrogen
3) 8 g of oxygen
4) 6 g of Urea
14. Which of the following gases has the highest density under standard conditions?
1) CO
2) $\mathrm{N}_{2} \mathrm{O}$
3) $\mathrm{C}_{3} \mathrm{H}_{8}$
4) SO_{2}
15. Which of the following is heaviest?
1) 50 g of iron
2) 5 moles of nitrogen
3) 0.1 gram atom of silver
4) 10^{23} atoms of carbon
16. The molar volume of any gas at STP is
1) 1 liter
2) 22.414 lit
3) $6.02 \times 10^{23} \mathrm{lit}$
4) 22.414 ml
17. $\mathbf{1}$ gram - atom of oxygen is
1) 1 g of oxygen
2) 16 g of oxygen
3) 22.4 g of oxygen
4) 8 g of oxygen
18. One gram molecule of oxygen is
1) 16 g of oxygen
2) 32 g of oxygen
3) $8 g$ of oxygen
4) \lg of oxygen
19. Avogadro number is
1) The number of atoms in one gram-atomic-weight
2) The number of molecules in one gram-molecular-weight
3) The number of atoms in 0.012 kg of $\mathrm{C}-12$
4) All of these
20. A mole is
1) The amount of substance containing the same number of chemical units as the number of atoms in exactly 12 g of C^{12}.
2) The amount of substance containing Avogadro number of chemical units.
3) The unit for expressing amount of a substance
4) All the above
21. The mass of a mole of hydrogen atoms is
1) 1.008 g
2) 2.016 g
3) $6.02 \times 10^{23} \mathrm{~g}$
4) 1.008 amu
22. The molar mass of hydrogen is
1) 1.008 g
2) 2.016 g
3) $6.02 \times 10^{23} \mathrm{~g}$
4) 2.016 amu

23. One mole of atoms of nitrogen represents

1) 6.02×10^{23} atoms of nitrogen
2) $28 g$ of nitrogen
3) 22.4 L of N_{2} at STP
4) 7 g of nitrogen
24. One mole of molecules of nitrogen represents
1) 6.02×10^{23} molecules of nitrogen
2) 7 g of nitrogen
3) 14 g of N_{2}
4) 11.2 L of N_{2} at STP

25. One mole of sodium represents

1) 6.02×10^{23} atoms of sodium
2) 46 g of sodium
3) 11 g of sodium
4) 34.5 g of sodium
26. The charge present on 1 mole electrons is
1) 96500 Coulombs
2) 1 Coulomb
3) 1.60×10^{-19} Coulombs
4) 0.1 Faraday
27. The weight of 0.1 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is
1) 106 g
2) 10.6 g
3) 5.3 g
4) $6.02 \times 10^{22} \mathrm{~g}$
28. The molar mass of a substance is 20 g . The molecular mass of the substance is
1) 20 g
2) 20 a.m.u
3) 10 g
4) $10 \mathrm{a} . \mathrm{m} . \mathrm{u}$
29. Avogadro number of helium atoms have a mass of
1) 2 g
2) $4 g$
3) 8 g
4) $4 \times 6.02 \times 10^{23} \mathrm{~g}$
30. The volume of two moles of SO_{3} at STP is
1) 22.4 L
2) 11.2 L
3) 40 L
4) 44.8 L
31. The following property of a gas does not vary with pressure and temperature
1) Density
2) Volume of a mole
3) Volume
4) Vapour density
32. The ratio between the number of molecules in equal masses of Oxygen and ozone is
1) $3: 2$
2) $2: 3$
3) $1: 1$
4) $1: 3$

www.sakshieducation.com

33. The gas which is twice as dense as oxygen under the same conditions is
1) Ozone
2) Sulphur trioxide
3) Sulphur dioxide
4) Carbon dioxide
34. 1 mole of water vapour is condensed to liquid at 25°. Now this water contains
i) 3 moles of atoms
ii) 1 mole of H_{2}
iii) 10 moles of electrons
iv) 16 g of oxygen

The correct combination is

1) (i) \& (ii) are correct
2) (i) \& (iii) are correct
3) (i) \& (iv) are correct
4) All are correct
35. A chemical equation is always balanced with respect which one of the following
i) Number of atoms
iii) Number of moles
1) Only i is correct
2) Only iv Correct
ii) Number of molecules
iv) Mass
3) Only iii correct
4) Both i \& iv correct

Assertion \& reason type questions
Note: 1) Both (A) and (R) are true and (R) is the correct explanation of (A).
2) Both (A) and (R) are true and (R) is not the correct explanation of (A).
3) (A) is true but (R) is false.
4) Both (A) and (R) are false.
36. (A): $\mathbf{2} \mathrm{g}$ of hydrogen contains Avogadro number of molecules
(R): One mole of an ideal gas at STP occupies 22.4 lt.

www.sakshieducation.com

37. (A): One liter of water at $4^{\circ} \mathrm{C}$ contains 55.5 N molecules.
(R) : Density of water at $4^{\circ} \mathrm{C}$ is $1 \mathrm{~g} / \mathrm{ml}$ and 18 g . Of water represents one mole.
38. (A): $\mathbf{2} \mathbf{g}$ of Hydrogen contains Avogadro number of atoms.
$(R):$ One mole of any gas contains Avogadro number of atoms.
39. (A): 1 c.c. of Nitrogen at STP contains $2.67 \times 10{ }^{19}$ molecules.
(R): Molar volume of an ideal gas at STP contains Avogadro number of molecules.
40. (A): $\mathbf{2 8} \mathbf{g}$ of nitrogen occupies 22.4 lt. at STP.
$(R):$ Vapour density of nitrogen is $\mathbf{1 4}$ at all temperatures and pressures.
41. (A): $8 \mathrm{~g} \mathrm{CH}_{4}$ and 14 gr . nitrogen together occupy 11.2 It . of volume at STP.
$(\mathbf{R}):$ Equal weights of all gases under the same conditions contain equal number of molecules.
42. (A): 58.5 g of solid NaCl contains Avogadro number of Cl^{-}ions.
(\mathbf{R}) : Chloride ion has Inert gas configuration.
43. Which of the following has highest mass?
1) One gram atom of Iron
2) 5 moles of N_{2}
3) 10^{24} carbon atoms
4) 44.8 lit of Heat STP
44. Elements are always combine in the ratio of their
1) Atomic weights
2) Molecular weights
3) Equivalent weights
4) Mass numbers
45. Molecular weight of orthophosphoric acid is M. Its equivalent weight is
1) 3 M
2) M
3) $M / 3$
4) $3 / \mathrm{M}$
46. Which of the following acid has the same molecular weight and equivalent weight?
1) $\mathrm{H}_{3} \mathrm{PO}_{2}$
2) $\mathrm{H}_{3} \mathrm{PO}_{3}$
3) $\mathrm{H}_{3} \mathrm{PO}_{4}$
4) $\mathrm{H}_{2} \mathrm{SO}_{4}$
47. The equivalent weight of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is
1) 106
2) 53
3) 26.5
4) 35.33
48. The following is not a fixed quantity
1) Atomic weight of an element
2) Equivalent weight of an element (or) compound
3) Molecular weight of a compound
4) Formula Weight of a substance
49. Equivalent weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in acidic medium is
1) 24.5
2) 49
3) 147
4) 296
50. The equivalent weight of Bayer's reagent is
1) 31.6
2) 52.6
3) 79
4) 158
51. Molecular weight of KMnO_{4} is "M". In a reaction KMnO_{4} is reduced to $\mathrm{K}_{2} \mathrm{MnO}_{4}$. The equivalent weight of KMnO_{4} is
1) M
2) $M / 5$
3) $M / 3$
4) 2 M
52. When Ferrous sulphate acts as reductant, its equivalent weight is
1) Twice that of its molecular weight
2) Equal to its molecular weight
3) One-half of its molecular weight
4) One-third of its molecular weight
53. $\mathbf{2 H}_{2} \mathrm{O} \rightarrow \mathbf{4} \mathrm{e}^{-}+\mathrm{O}_{\mathbf{2}}+\mathbf{4 H ^ { + }}$. The equivalent weight of molecular oxygen is
1) 32
2) 16
3) 8
4) 4

www.sakshieducation.com

54. (A): The equivalent weights of nitric acid and crystalline oxalic acid are same.
(R) : The basicity is same for both the acids.
55. (A): The basicity of $\mathrm{H}_{3} \mathrm{PO}_{3}$ is 2 .
$(\mathbf{R}):$ Two hydrogen atoms are attached to phosphorus through oxygen atoms.
56. In acidic medium Dichromate ion oxidizes ferrous ion to Ferric ion. If the gram-molecular weight of potassium dichromate is 294 gm , its equivalent weight is
1) 294
2) 147
3) 49
4) 24.5
57. The equivalent weight of Iodine in the reaction
$\mathbf{2 N a} \mathbf{2}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{\mathbf{2}} \rightarrow \mathbf{2 N a I}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ is $[\mathrm{M}=\mathrm{mol}$. wt $]$
1) M
2) $M / 2$
3) $M / 4$
4) 2 M
58. Medium

Equivalent weight of KMnO_{4}
A) Acidic
a) 158
B) Neutral
b) 79
C) Strongly basic
c) 52.6
D) Weakly basic
d) 31.6

The correct match is

1) A - d, B-c, C - a, D - c
2) A-d, B-c, C-a, D-b
3) A-d, B-b, C - a, D-c
4) A-d, B-c, C - a, D-a
59. Molecular mass of white phosphorous is
1) 31 amu
2) 31 g
3) 124 amu
4) 124 g
60. Basicity of sulphuric acid is
1) 0
2) 1
3) 2
4) 3

KEY

1) 3	2) 4	3) 3	4) 3	5) 4	$6) 3$	7) 4	8) 3	9) 3	10) 4
11) 3	12) 2	13) 2	14) 4	15) 2	$16) 2$	$17) 2$	$18) 2$	$19) 4$	$20) 4$
21) 1	22) 2	$23) 1$	$24) 1$	25) 1	$26) 1$	$27) 2$	$28) 2$	$29) 2$	$30) 4$
$31) 4$	$32) 1$	$33) 3$	$34) 4$	$35) 4$	$36) 2$	$37) 1$	$38) 4$	$39) 1$	$40) 2$
41) 4	$42) 2$	$43) 2$	$44) 3$	$45) 3$	$46) 1$	$47) 2$	$48) 2$	$49) 2$	$50) 2$
51) 1	52) 2	$53) 3$	$54) 3$	$55) 1$	$56) 3$	572	$58) 1$	$59) 3$	$60) 3$

Solutions

2). Sulphur molecule is S_{8}. Its molar mass $=8 X 32=256 \mathrm{gm}$
3) Weight of water $=5 \mathrm{mg}=5 \times 10^{-3} \mathrm{~g}$

No. of water molecules $=($ weight/GMW $) \times 6.023 \mathrm{X} 1023=\left(5 \mathrm{X} 10^{-3} \mathrm{~g} / 18\right)$
$\mathrm{X} 6.023 \times 10^{23}=1.67 \times 10^{20}$
4). Mass of 1.5×10^{19} molecules $=2 \mathrm{mg}=2 \times 10^{-3} \mathrm{~g}$
\therefore Mass of 6×10^{23} molecules (i.e. GMW) $=\left(6 \times 10^{23} / 1.5 \times 10^{19}\right) \mathrm{X} 2 \times 10^{-3} \mathrm{~g}=80 \mathrm{gm}$
5) Refer Point 12
6) $d=1 \mathrm{~g} / \mathrm{ml}$ i.e. mass of 1 ml water $=1 \mathrm{gm}$

No. of molecules in 1 gm water $=1 \mathrm{X} 6.023 \times 10^{23} / 18$
Volume of $\left(6.023 \times 10^{23} / 18\right)$ molecules $=1 \mathrm{ml}$

Volume of one molecule $=1 /\left(6.023 \times 10^{23} / 18\right)=3 \times 10^{-23} \mathrm{ml}$
7) Change in oxidation state per molecule $=+24-0=24$

www.sakshieducation.com

$\therefore \mathrm{GEW}=\mathrm{M} / 24$
8) Molecules are I the ratio of their moles. Moles of $\mathrm{O}_{2}:$ moles of $\mathrm{N}_{2}=(1 / 32):(4 / 28)$ =7:32
9) 1 mole i.e. $100 \mathrm{~g} \mathrm{CaCO}_{3}$ contains 3 gram atoms i.e. $3 \mathrm{X} 6.023 \times 10^{23}$ atoms of Oxygen

No, of atoms of Oxygen in $50 \mathrm{~g} \mathrm{CaCO}_{3}=(50 / 100) \mathrm{X} 3 \times 6.023 \times 10^{23}=9.035 \times 10^{23}$
10. No. of moles in $14 \mathrm{gm} \mathrm{CO}=14 / 28=0.5$

Moles in $7 \mathrm{gm} \mathrm{N}_{2}+8 \mathrm{gm} \mathrm{O}_{2}=(7 / 28)+(8 / 32)=0.5$
11) 12 gm carbon gives 6.023×1023 molecules of CO_{2}

3 gm carbon gives $(3 / 12) 6.023 \times 10^{23}=1.506 \times 10^{23}$ molecules of CO_{2}
12. No. of atoms $=($ weight $/$ molar mass $) \times 6.023 \times 10^{23} \mathrm{Xno}$, of atoms per molecule
13. No. of molecules $=($ weight $/$ molar mass $) \times 6.023 \times 10^{23}$
14. At STP density=GMW/22.4g/lit. Higher the Gmw, higher will be the density.
15. Mass of 5 moles Nitrogen $=5 \times 28=140 \mathrm{gm}$

Mass of 0.1 gram atoms $\mathrm{Ag}=0.1 \mathrm{X} 108=10.8 \mathrm{gm}$
Mass of 10^{23} atoms of carbon $=\left(10^{23} / 6 \times 10^{23}\right) \mathrm{X} 12=2 \mathrm{gm}$
26. Charge on electron $=1.602 \times 10^{-19}$ coulmbs

Charge o 1 mole i.e. 6×10^{23} electrons $=1.602 \times 10^{-19}$ coulmbsX6X10 $0^{23}=96500$ coulmbs $=1$ Faraday
27. Mass of 0.1 molesNa $\mathrm{CO}_{3}=$ moles $\mathrm{XGMW}=0.1 \mathrm{X} 106=10.6 \mathrm{~g}$
28. Molar mass is in gm while molecular mass in a,m.u.
29. Mass of Avogadro number of atoms $=\mathrm{GAW}=4 \mathrm{gm}$
30. Volume at $\mathrm{STP}=$ moles $\mathrm{X} 22.4=2 \mathrm{X} 22.4=44.8$ lit

www.sakshieducation.com

31. V.D is the ratio of density of a gas to density of H_{2}. It is always constant.
32. Molecules are In the ratio of their moles. Moles of O_{2} : moles of $\mathrm{O}_{3}=(1 / 32):(1 / 48)$ $=3: 2$
$33 \mathrm{~d} \propto$ GMW or $\left(\mathrm{d}_{1} / \mathrm{M}_{1}\right)=\left(\mathrm{d}_{2} / \mathrm{M}_{2}\right)$
34,1 mole water contains 2 moles of H atoms +1 mole of O atoms $=3$ moles of atoms
i.e. 1mole of $\mathrm{H}_{2}, 16 \mathrm{gm} \mathrm{O}$ and $(2 \mathrm{X} 1+8)=10$ moles of electrons.
33. Mass of $1 \mathrm{lit}=1 \mathrm{~kg}=1000 \mathrm{gm}$ water

No. of molecules $=(w t / G M W) \mathrm{XN}=(1000 / 18) \mathrm{XN}=55.5 \mathrm{~N}$
43. Mass of One gram atom of Iron $=56 \mathrm{gm}$

Mass of 5 moles of $\mathrm{N}_{2}=5 \mathrm{X} 28=140 \mathrm{gm}$
Mass of 10^{24} carbon atoms $=\left(12 \mathrm{X} 10^{24}\right) / 6 \times 10^{23}=20 \mathrm{gm}$
Mass of 44.8 lit of Heat $\mathrm{STP}=(4 \mathrm{X} 44.8 / 22.4)=8 \mathrm{gm}$
45. Ortho phosphoric acid is a tri basic acid.
46. $\mathrm{H}_{3} \mathrm{PO}_{2}$ is a mono basic acid. Thus GMW=GEW
47. The equivalent weight of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{GMW} / 2=106 / 2=53 \mathrm{gm}$
50. Bayer's reagent is cold and alkaline KMnO_{4}. In alkaline medium, oxidation number of Mn changes from +7 to +4 . Thus GEW $=\mathrm{M} / 3=158 / 3=52.6$
51. Oxidation number of Mn changes from +7 to +6 . Thus $\mathrm{GEW}=\mathrm{M} / 1$
52. Oxidation number of Fe changes from +2 to +3 . Thus $\mathrm{GEW}=\mathrm{M} / 1$
54. Nitric acid is monobasic while oxalic acid is dibasic.
56. In acid medium oxidation state of Cr changes from +6 to +3 . Thus change in oxidation state per molecule $=2 \mathrm{X}+3=+6$

GEW of $\mathrm{K}_{2} \mathrm{CrO}_{7}=\mathrm{GMW} / 6=294 / 6=49$

