De-Broglie Wave Theory, Heisenberg Uncertainity Principle

1. Wavelength of the wave associated with a moving electron
1) Decreases as speed of electron Increases.
2) Increases as speed of electron Increases.

3) Independent of speed of electron.
4) Is zero.
2. If an electron and \mathbf{H}-atom have the same de Broglie wavelength, then the ratio of their velocities is

1) $1836: 1$
2) $1: 1836$
3) $1: 1$
4) $1: 2$
3. A hydrogen molecule and helium atom are moving with the same velocity. Then the ratio of their de Brogile wavelength is
1) $1: 1$
2) $1: 27$
3) $2: 1$
4) $2: 3$
4. Wavelength of an electron is $5 \mathrm{~A}^{\circ}$. Velocity of the electron is
1) $1.45 \times 10^{8} \mathrm{~cm} / \mathrm{s}$
2) $1.6 \times 10^{-8} \mathrm{~cm} / \mathrm{s}$
3) $3.2 \times 10^{-27} \mathrm{~cm} / \mathrm{s}$
4) $3.2 \times 10^{27} \mathrm{~cm} / \mathrm{s}$
5. The momentum of a particle of wavelength $10 \mathrm{~A}^{\circ}$ is
1) 6.625×10^{-27} g. cm^{-1}
2) $6.625 \times 10^{-19} \mathrm{~g} \cdot \mathrm{~cm} \cdot \mathrm{~s}^{-1}$
3) $6.625 \times 10^{-20} \mathrm{~g} . \mathrm{cm} . \mathrm{s}^{-1}$
4) $6.625 \times 10^{-23} \mathrm{~g} \cdot \mathrm{~cm} \cdot \mathrm{~s}^{-1}$
6. The de Broglie wavelength of a particle with mass 10 mg and velocity $100 \mathrm{~cm} / \mathrm{s}$ is
1) $6.63 \times 10^{-27} \mathrm{~cm}$
2) $6.63 \times 10^{-27} \mathrm{~A}^{\circ}$
3) $6.63 \times 10^{-29} \mathrm{~cm}$
4) $6.63 \times 10^{-29} \mathrm{~A}^{\circ}$
7. The de Broglie wave length of a an Iron ball of mass 2 mg moving with a velocity of $2 \mathrm{Km} / \mathrm{sec}$ is
1) $\frac{6.6 \times 10^{-34}}{4} \mathrm{~m}$
2) $\frac{6.6 \times 10^{-31}}{4} \mathrm{~m}$
3) $\frac{6.6 \times 10^{-30}}{4} \mathrm{~m}$
4) $\frac{6.6 \times 10^{-27}}{4} \mathrm{~m}$
8. The de- Broglie's wavelength of a particle having momentum of $3.3125 \times 10^{-24} \mathbf{k g} . \mathrm{ms}^{-1}$ will be
1) $2 \times 10^{-10} \mathrm{~A}^{\circ}$
2) $2 \mathrm{~A}^{\circ}$
3) $2 \times 10^{-10} \mathrm{~cm}$
4) 2 nm
9. The de Broglie wavelength of a tennis ball of mass 6.625 g moving with a velocity of 100 cm per second is
1) $10^{-33} \mathrm{~m}$
2) $10^{-31} \mathrm{~m}$
3) $10^{-33} \mathrm{~cm}$
4) $10^{-31} \mathrm{~cm}$
10. The de Broglie wavelength associated with a ball of mass, 200 g and moving at a speed of 5 metres $/ \mathrm{sec}$, is in the order of
1) $10^{-32} \mathrm{~m}$
2) $10^{-34} \mathrm{~m}$
3) $10^{-31} \mathrm{~m}$
4) $10^{-30} \mathrm{~m}$
11. If uncertainity in position is zero, the uncertainity in momentum of an electron will be
1) Zero
2) Infinity
3) Unity
4) Zero or infinity
12. The uncertainity in momentum of an electron is $\mathbf{1 \times 1 0 ^ { - 5 }} \mathbf{~ k g . m} / \mathrm{s}$. The uncertainity in its position will be
1) $1.05 \times 10^{-28} \mathrm{~m}$
2) $1.05 \times 10^{-26} \mathrm{~m}$
3) $5.27 \times 10^{-30} \mathrm{~m}$
4) $5.27 \times 10^{-28} \mathrm{~m}$
13. If the wavelength of the electron is numerically equal to the distance travelled by it in one second, then
1) $\lambda=\sqrt{\frac{h}{m}}$
2) $\lambda=\frac{h}{p^{2}}$
3) $\lambda=\frac{h}{m}$
4) $\lambda=\sqrt{\frac{h}{p}}$
14. Two particles A and B are in motion. If the wavelength associated with the particle " A " is $5^{\prime} \mathbf{1 0}^{\mathbf{- 8}} \mathbf{~ m}$, the wavelength of particle B having momentum half of " A " is
1) $2.5 \times 10^{-8} \mathrm{~m}$
2) $1.0 \times 10^{-7} \mathrm{~m}$
3) $1.25 \times 10^{-7} \mathrm{~m}$
4) $1 \times 10^{-8} \mathrm{~m}$
15. The de - Broglie wavelength of an electron in the second orbit of H - atom is
1) Equal to circumference of the second orbit
2) Equal to half of the circumference of the second orbit
3) Equal to double of the circumference of the second orbit
4) Equal to one fourth of the circumference of the second orbit
16. The two particles " A " and " B " have de - Broglie wavelengths $\mathbf{1 ~ m m}$ and $5 \mathbf{~ m m}$ respectively. If mass of " A " is four times the mass of " B ", the ratio of kinetic energies of " A and B " would be
1) $5: 1$
2) $20: 1$
3) $25: 4$
4) $5: 4$
17. If the kinetic energy of an electron is $4.55 \times 10^{-25} \mathrm{~J}$, find its wavelength (Planck's constant, $\mathrm{h}=6.625 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}, \mathrm{~m}=9.1 \times \mathbf{1 0}^{-31} \mathrm{~kg}$).
1) 662.5 nm
2) 565.6 nm
3) 728 nm
4) 465.8 nm
18. The propagation of electronic wave in ' N ' shell of hydrogen atom is shown by
1)

2)

3)

4) None
19. If the de Broglie wave length of electron in1st orbit of \mathbf{H}-atom is λ, then the circumference of the 4th orbit is

1) 4λ
2) 16λ
3) $\frac{\lambda}{4}$
4) $\frac{\lambda}{16}$
20. The uncertainities in the velocities of two particles A and B are 0.05 and $0.02 \mathrm{~m} . \mathrm{sec}^{-1}$ respectively. The mass of B is five times to that of mass A. What is the ratio of uncertainities $\left(\frac{\Delta x_{A}}{\Delta x_{B}}\right)$ in their positions?
1) 2
2) 0.25
3) 4
4) 1
1)1
5) 1
3)3
4)1
5)3
6)1
7)2
8)2
9)2
10)2
11)2
12)2
13)1
14)2
15)2
16)3
17)3
18)2
19)2
20)1

www.sakshieducation.com

HINTS

17. KE of electron, $1 / 2 \mathrm{mv}^{2}=4.55 \times 10^{-25} \mathrm{~J}$.

Mass of electron, $\mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg}$

$$
\begin{gathered}
\mathrm{v}^{2}=\frac{2 \times K E}{m}=\frac{2 \times 4.55 \times 10^{-25} \mathrm{~J}}{9.1 \times 10^{-31} \mathrm{~kg}}, \mathrm{v}^{2}=10^{6} \mathrm{~m}^{2} \mathrm{~s}^{-2} \quad, \mathrm{v}=10^{3} \mathrm{~ms}^{-1} \\
\therefore \lambda=\frac{h}{m v} \quad \text { i.e } \lambda=\frac{6.625 \times 10^{-34} \mathrm{Kgm}^{2} \mathrm{~s}^{-1}}{9.1 \times 10^{-31} \mathrm{~kg} \times 10^{3} \mathrm{~ms}^{-1}}=7.28 \times 10^{-7} \mathrm{~m}
\end{gathered}
$$

18. The number of electron waves (or wave lengths) is equal to the principal quantum number "n".
19. Circumference $=\mathrm{n}^{2} \lambda=4^{2} \lambda=16 \lambda$
20. $\frac{\Delta x_{A} \Delta V_{A}}{\Delta x_{B} \Delta V_{B}}=\frac{m_{B}}{m_{A}}$
