Taxonomy

1.	Alpha Taxonomy is				L	J				
	1. Primitive taxonom	y 2. De	escriptive taxonomy							
	3. Natural taxonomy	4. Ta	4. Taxonomy based on only morphological cha							
2.	Sequential order of	four basic compo	nents of taxonomy	is	[]				
	A. Classification	B. Nomencl	ature							
	C. Identification	D. Characte	rization							
	1. D B C A	2. A C B D	3.C B D A	4. D C B A) `					
3.	True statement rega	arding artificial sy	stem of classificati	ion is	[]				
	1. Anatomy is one of	the criteria for the	system of classifica	ation						
	2. Number of petals of	an be the criteria f	or the classification	' O'						
	3. Identification of an	unknown plant is	difficult							
	4. 'Species Plantarun	n' is a natural syste	m of classification							
4.	Linnaeus classificat	ion of plants is ba	sed on		[]				
	1. Form	2. Habitat	3.Stamens	4. Vegetati	ve cha	racters				
5.	Consideration of ma	any morphologica	l characters is a		[]				
	1. Natural system of	classification	2. Omega t	taxonomy						
	3. Phylogenetic syste	m of classification	4. Numerio	cal taxonomy						
6.	False statements reg	garding Natural sy	ystem of classificat	ion	[]				
	1. Characters of evol	utionary importanc	e were not consider	red						
	2. Floral characters w	ere given greater i	mportance since the	ey are conserved						
	3. It is an easy means	of identification								
	4. Lower the taxon m	ore the groups								
7.	True statement rega	arding Bentham &	k Hooker's classific	cation	[]				
	I. It is a natural system	m of classification								
	II. It is published after	r Darwin's "Origin	n of Species'.							
	III. It is the classifica	tion of only flower	ring plants							
	IV. They published the	ne book in the nam	e 'Historia Plantaru	m'						
	1. I & II	2. II & III	3. II & IV	4. I, II & II	I					
8.	Total number of col	orts in B & H cla	ssification		[]				
	1) 15	2) 25	3) 10	4) 21						

9.	Nati	irai or	aers oi	Ван	1 Classii	ication	ı is eq	uai to p	presen	t day			L	J	
	1. Oı	rders			2. Ser	ries			3. Fa	milies		4. G	enera		
10.As	ssertio	n (A):	Group	ing of	plants i	nto Ho	erbs, S	Shrubs	and T	rees is	an Art	tificial	syster	n []
	Reas	son(R)	: It is no	ot sho	wing an	y evol	utiona	ry ten	dencie	5					
	1) Bo	oth A a	nd R ar	e true	and R is	the co	rrect e	explana	tion of	A.					
	2) Bo	oth A a	nd R ar	e true	but R is	not the	e corre	ect expl	anatior	of A.					
	3) A	is true,	, R is fa	lse											
	4) A	is false	e, R is tr	ue									1		
11.	Mate	ch the	followi	ng									Ī]	
	List	<u>- I</u>						List	<u>- II</u>		(G			
	A)Hi	istoria l	Plantaru	ım			I. 24	Group	s			*			
	B) S	pecies ?	Plantaru	ım			II. P	hyloger	netic sy	stem					
	C) G	enera I	Plantaru	m			III. I	Herbs, S	Shrubs	and Tr	ees				
	D) F	amilies	of Flov	wering	plants		IV. I	Natural	system	of cla	ssificat	ion			
							V. C	ohorts							
		A	В	C	D			A	В	C	D				
	1)	III	I	IV	V	4	2)	IV	V	III	I				
	3)	III	I	V	II	* (4)	II	III	IV	I				
12.	Coh	orts ar	e equal	to pr	esent da	ıy							[]	
	1. Oı	ders		2. Fa	milies		3. Se	eries			4.Su	b class	;		
13.	Tota	l numl	ber of a	ngios	permic 1	familie	es in B	8 & H c	lassific	cation	is		[]	
	1) 20)2		2) 10	55		3) 19	99		4) 34	4				
14.	Stati	us of T	halami	florae	in Bent	tham &	& Hoo	kers cl	assific	ation is	8		[]	
	1. Se	eries	M.	,	2. Sul	class		3. Na	atural c	order		4. C	lass		
15.	Engl	ler and	Prantl	's clas	ssificatio	on is							[]	
	1. Aı	rtificial	system	2. N	atural sy	stem		3. Al	PG sys	tem	4. Pł	nylogei	netic s	ystem	
16.	True	stater	nent re	gardi	ng phylo	ogenet	ic syst	tem of o	classifi	cation	is		[]	
	I. Th	ey are	of poet	Darwi	nian per	riod									
	II. Pı	rimitive	e plants	are pl	aced in t	he beg	ginning	g of the	classif	ication					
			y to und												
			cation o	f the p	olants is	•	asy								
	1. I &	& II			2. II &	& III		3. I,	II & III	[4. I,	III & I	V		

1/.	Considering	inunui eus oi	characters	anu each	i character i	s given	equai iiiipoi	tance	5 111
								[]
1. Na	tural system	2. Numerica	l taxonomy	3. Phy	logenetic sys	stem	4. Omega ta	xonoı	my
18. N	umber of chr	omosomes is	considered i	in				[]
1. Nu	merical taxono	omy 2. Ch	emotaxonom	y 3. Cyto	otaxonomy		4. Phylogen	etic s	ystem
19.	Problems of	taxonomy, l	ike grouping	g unrelat	ed taxa, can	be solv	ed by]
	1. Chemotax	onomy	2. Natural s	ystem			•	7	
	3. Numerical	l taxonomy	4. Artificial	classific	ation				
20.	Assertion (A	A): Sexual ch	aracters are	more us	eful in Taxo	nomy		[]
	Reason(R):	Sexual chara	cters do not	change 1	much in the	evoluti	on •		
	1) Both A an	d R are true a	and R is the co	orrect exp	planation of	A.			
	2) Both A an	d R are true b	out R is not th	ne correct	explanation	of A.			
	3) A is true, l	R is false							
	4) A is false,	R is true							
21.	Number of s	stamens in m	ustard plant	are				[]
	1) 5	2) 4		3) 6		4) 10			
22.	Which of the	e following c	an be repres	ented in	a floral form	nula		[]
	1. Superior o	vary, axile pl	acentation	2. Zyg	omorphic flo	wer, Inf	erior ovary		
	3. Petal 5, tw	visted aestivat	ion	4. Unis	sexual femal	e flower	, perigynous	flowe	er
23.	Leafy vegeta	able from fal	oaceae family	y is				[]
	1. Derris ind	lica 🕜	2. Ci	rotalaria	juncea				
	3. Trigonalla	a foenumgrae	cum 4. Pi	isum sativ	vum				
24.	Most impor	tant identific	ation charac	cter of Fa	abaceae is			[]
	1. Leaf base	2. Od	ld sepal	3. Sing	gle carpel		4. Corolla a	estiva	tion
25.	True statem	ent regardin	g vexillary a	estivatio	n is			[]
4	I. Keel petals	s are fused			II. Standard	petal is	anterior mos	t	
	III. Keel peta	als encloses se	ex organs		IV. Standard	d petal is	the smallest	t	
	1. I & II		2. I & III		3.II & III		4. II & IV		
26.	Economic us	se of sun hen	np is					[]
	1. Fiber yield	ding	2. Medicina	al	3. Oil yieldi	ng	4. Dy	ye yiel	lding

27.	Plants used as fode	der			[]
	1. Sesbania, Tephro	osia	2. Glycine	, Arachis		
	3. Dalbergia, Ptero	carpus	4. Crotala	ria, Phaseolus		
28.	Self pollinating pla	ants of Fabaceae a	re		[]
	1. Dolichos, Cicer	2. Pisum, Lathyru	s 3. Dolichos, Pisur	m 4. Lathyrus, C	Glycine	
29.	Scientific name of	Ashwagandha is			[]
	1. Solanum nigrum	2. Petunia alba	3. Withani	a somnifera	4. Datura	metal
30.	Assertion (A): Star	men and petals fal	l off at the same tin	ne in Solanaceae	1]
	Reason(R): Stame	n are epipetalous i	n Solanaceae		0)	
	1) Both A and R are	e true and R is the c	correct explanation of	f A.		
	2) Both A and R are	e true but R is not th	ne correct explanatio	n of A.		
	3) A is true, R is fall	lse				
	4) A is false, R is tr	ue	>			
31.	Common characte	r of <i>Solanum, Cap</i>	sicum and Lycopers	cicon is	[]
	1. Pollination metho	od 2. Fruit 3.	Inflorescence	4. Economic i	mportance	;
32.	Inflorescence is pa	nicle in			[]
	1. Datura	2. Solanum	3. Nicotiana	4. Petunia		
33.	True statement re	garding gynoeciun	n of <i>Datura</i> is]]
	1. Tetracarpellary		2. Unilocular			
	3. Free central place	entation	4. Carpels arrange	ed obliquely		
34.	Common name of	Solanum nigrum i	s]]
	1. Ashwagandha	2. Day king	g 3. Kamanc	hi 4. Tho	rn apple	
35.	Reticulate venation	n in monocot plan	t is seen in		[]
	1. Spanish dagger	2. Sarsapar	illa 3. Meadow	saffron	4. Glory li	ly
36.	True statement re	garding Liliaceae f	family is		[]
	I. Undistinguished J	perianth	II.Anterior odd te	pal		
	III. Zygomorphic fl	owers	IV. Trimerous flo	wers		
	1) I, II, III	2) I , II	3) ΙΙ, ΙΙΙ, Γ	V 4) I, II,	, IV	
37.	In aerial stem mod	lification is seen in	ı		[]
	1. Colchicum	2. Gloriosa	3. Ruscus	4. Smilax		
38.	Gynoecium matur	es earlier than sta	mens in		[]
	1. Colchicum	2. Allium	3. Yucca	4. Glor	riosa	

- 39. Stamens in Allium cepa are
 - 1. 6 in a single whorl
- 2. Epiphyllous

[

[

]

]

- 3. Transverse dehiscence
- 4. Monothecous
- 40. Assertion (A): Leaves are radical in Allium
 - Reason(R): Entire stem is underground in Allium
 - 1) Both A and R are true and R is the correct explanation of A.
 - 2) Both A and R are true but R is not the correct explanation of A.
 - 3) A is true, R is false
 - 4) A is false, R is true

Taxonomy

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	4	2	3	1	2	4	2	3	2	3	1	3	1	4	1	2	3	1	1
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
3	2	3	4	2	1	4	2	3	1	2	3	4	3	2	4	3	1	2	1