Pollination

1.	Hydrophily and incomp	lete flowers are pre	esent in		()			
	1) Bignonia 2) Colocas	ia 3) V	allisnaria	4) <i>H</i> e	elianthi	us			
2.	Example for dicliny is				()			
	1) Hibiscus 2) Commeli	ina 3) A	calypha	4) Abutilon					
3.	True statement regardin	ng pollination is			(0			
	I: All bisexual flowers un	dergo only autogam	у.						
	II: All unisexual flowers	undergo only Xenog	amy.	C	Y				
	III: All geitonogamous flo	owers are not unisex	ual.						
	1) I & II 2) O	nly III 3) II	& III	4) Only I					
4.	Assertion A: Geitonoga	my & Xenogamy ca	n take place in	Cocos	()			
	Reason R: Cocos is mon	oecious plant. Polle	en may be fron	r same or dif	ferent	plant.			
	1) Both A and R are true	and R is the correct of	explanation of A	4.					
	2) Both A and R are true	but R is not the corre	ect explanation	of A.					
	3) A is true, R is false								
	4) A is false, R is true	. 01	·						
5.	Scrophularia is an exam	ple for			()			
	1) Self sterility	2) Pollen prepoter	•	otogyny	4) Di	cliny			
6.	Pollination in hypantho				()			
	1) Direct pollination	2) Self pollination							
	3) Cleistogamy	4) Cross pollination							
7.	Assertion A: In Commel	• •	-	lace.	()			
	Reason R: Commelina s	C							
	1) Both A and R are true		1						
	2) Both A and R are true	but R is not the corre	ect explanation	of A.					
	3) A is true, R is false								
C	4) A is false, R is true	, . 				``			
8.	In Passiflora self pollina	_		. 1	()			
	1) Pollen pre potency2) Self sterility3) Triheterostyly4) Herkogam								

9.	In Ly	thrum	plants	flower	s show						()	
	1) Two different lengths of styles2) Male and female flower										ers		
	3) Wi	de ang	les betv	veen sta	amens a	and stig	gma	4) Th	ree diffe	erent lengths	s of style	es	
10.	Self p	ollen g	grains a	are poi	sonous	for sti	gmas o	of			()	
	1) As	teracea	e	2) Orc	chidace	ae		3) Fa	baceae	4) So	olanacea	ae	
11.	In Ma	artynia	and M	limulus	5						()	
	1) Sti	gmas a	re shor	ter than	stame	ns	2) Stig	gmas n	nature la	ater than star	nens		
	3) Sti	gmas a	re sens	itive			4) Stig	gmas a	re absei	nt		\frown	
12.	All fl	owers	with he	eterosty			(
	I : Die	chogan	ny	II : Se	nsitive	stigma	s III : I	Herkog	amy	IV :	Self ste	rility	
	1) I &	: III		2) II &	& III		3) I &	IV		4) I (& II		
13.	In Ox	alis th	e flowe	ers are						^	()	
	1) Dii	norphi	c	2) Tri	morphi	c	3) Pol	ymorp	hic	4) Homoga	mous		
14.	Safet	y mech	anism	in Aste	eracea	e ensur	es		X		()	
	1) Cro	oss poll	lination	in unis	sexual f	lowers	2) Sel	f fertil	ization i	in unisexual	flowers		
	3) Sel	f pollir	nation i	n bisex	ual flov	wers.	4) Cro	oss pol	lination	in bisexual	flowers		
15.	In Co	mmeli	na ben _ä	ghalens	sis		\sum				()	
	1) Cle	eistogai	mous fl	owers a	are aeri	al	\bigcirc						
	2) Both cleistogamous & chasmogamous flowers are aerial.												
	3) Cle	eistogai	mous fl	owers a	are und	ergrou	nd and	chasm	ogamot	is flowers ar	e aerial		
	4) Ch	asmoga	amous	flowers	are ab	sent.							
16.	In <i>He</i>	lianthi	us cont	rivances for cross pollination is							()	
	1) He	rkogan	1y & H	eterosty	yly	2) Het	terostyl	y & Po	ollen pe	r potency			
	3) He	rkogan	ny & Pi	otandr	у	4)Prot	andry a	and sat	fety med	chanism			
17.	Matc	h the f	ollowir	ıg							()	
		List - A	Å	List	- B								
	A Stre	eptocar	rpus	I. Dic	hogamy	y							
	B. Cle	erodend	dron	II. He	rkogan	ıy							
	C. Pa	ssiflord	a	III. Cl	eistoga	my							
	D. Hi	biscus		IV. D	icliny								
				V. Sel	lf Steril	ity							
		А	В	С	D		А	В	С	D			
	1)	IV	Ι	V	Π	3)	III	Ι	II	V			
	2)	III	Ι	V	II	4)	II	III	IV	V			

18.	Even though Herkogamy and Dich	ogamy is present self	f pollination	is guara	ntee
	in			()
	1) Gloriosa 2) Helianthus	3) Clerodendron	4) Solanu	т	
19.	Homogamy is			()
	1) All flowers opening at the same ti	me on a plant			
	2) All flowers pollinating at the same	e time on a plant.			
	3) In a flower both male & female se	ex organs maturing at s	ame time.		
	4) In a flower both male & female se	ex organs look alike.			$\overline{\ }$
20.	Pollination in which maximum gen	netic variations are se	en is)
	1) Geitonogamy 2) Autog	amy 3) Xenoga	my 4)	Cleistog	amy
21.	Pollination by bats is seen in		()	()
	1) Sausage tree2) Night	queen 3) Sun flow	wer 4) G	lory-lily	
22.	Dicliny is a contrivance for preven	ting		()
	1) Autogamy 2) Xenogamy	3) Geitonogamy	4) Cross J	pollinati	on
23.	In chasmogamous flowers			()
	1) Always self pollination	2) Always cross p	ollination		
	3) Both self & Cross pollination.	4) Neither self no	r cross pollir	ation.	
24.	Cross pollination that looks like a	self pollination		()
	1) Xenogamy	2) Geitonogamy			
	3) Both Xenogamy & Geitonogamy	4) Homogamy			
25.	Closely related pollen grains canno	ot germinate fast on t	he stigma of	· ()
	1) Passiflora 2) Dolichos	3) Hibiscus	4) Lythru	т	
26.	Hibiscus is			()
	1) Unisexual	2) Bisexual, Hete	rogamous		
	3) Bisexual, cleistogamous	4) Unisexual steri	ile		
27.	Oldenlandia is an example for			()
	1) Diheterostyly	2) Triheterostyly			
	3) Self pollination always	4) Sensitive stign	nas		
28.	In Primula flowers are			()
	1) Dimorphic, dichogamy, heterosty	yly 2) Trimorphic, He	omogamy, H	eterosty	ly
	3) Herkogamy, dichogamy	4) Triheterostyly,	protandry		

29.	In a flower of <i>Hel</i>	<i>ianthus</i> 200 disc flor	rets and 50 ray flore	ets are presen	t. If cr	OSS
	pollination fails h	ow many fruits are	possible?		()
	1) 250	2) 50	3) 150	4) 200		
30.	In heterostyly pol	linating agent must	be		()
	1) Wind	2) Birds	3) Water	4) Ins	sects	
31.	Pollination in Yuc	<i>ca</i> is by			()
	1) Insects	2) Wind	3) Water	4) Mammals	3	\land
32.	In Lythrum, each	flower show			(
	1) Two different le	ngths of styles	2) Two differen	t lengths of sta	amens	•
	3) Wide angles bet	ween stamens and sti	igma 4) Three differe	ent lengths of s	styles	
33.	Gynoecium matur	res earlier than stan	nens in	\mathbf{O}	()
	1) Solanum	2) Borassus	3) Passiflora	4) Dolichos		
34.	Assertion A: All d	ichogamous flowers	s are bisexual.		()
	Reason R: Someti	mes self pollination	can take place in di	ichogamous fl	lowers	•
	1) Both A and R and	e true and R is the co	orrect explanation of	А.		
	2) Both A and R and	e true but R is not the	e correct explanation	of A.		
	3) A is true, R is fa	lse	<u>O</u>			
	4) A is false, R is t	rue				
35.	Dimorphic flower	s are seen in the cor	ndition		()
	1) Protandry	2) Herkogamy	3) Trihetero	styly 4) Di	heteros	styly
36.	A dichogamous flo	ower produced seed	s by autogamy. Stig	ma was recep	otive fi	om 8
	am to 3 pm. Polle	n was viable from 1	pm to 7 pm. Pollina	tion might ha	ave tal	ken
	place between.				()
	1) 8 am and 1 pm	2) 3 pm and 7 pm	3) 1 pm and 3 pm	4) 7 pm and	8 am	
37.	Generally in plant	ts with large simple	spadix inflorescence	e pollinator is	5	
					()
	1. Ant	2. Bird	3. Snail		4. W	ind
38.	If pollination occu	irs beneath the surf	ace of water, it is		()
	1. Epihydrophily	2. Endohydrophily	3. Mesohydrophily	4. Hypohydi	rophily	,
39.	In <i>Lythrum</i> flower	r 'A' shows long styl	le, flower 'B' shows	medium style	e and f	lower
	'C' shows short st	yle. Pollination is p	ossible between.	()	
	1. A and B	2. B and C	3. C and A	4. Any two f	flowers	3

40. Wind pollinating plants show

- 1. Fragrant flowers 2. Attractive flowers
- 3. Versatile stamens 4. Sessile flowers

Pollination - Key

1																			
	2	3	4	5	6	7	8	9	10	11	12		14			17	18	19	4
3	3	2	1	3	4	4	2	4	2	3	1	2	3	3	3	2	2	3	
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	
1	1	3	2	2	2	1	1	4	4	1	2	1	2	4	3	3	4	4	Ī
		2 23 3		C		2		Ċ	e	ç	5								

)

(