Embryology-II

1.	True statement regarding pollination is												
	I : All bisexual flowers undergo only autogamy.												
	II : All unisexual flowers	undergo only Xenoga	my.										
	III : All geitonogamous flo	owers are not unisexu	al.										
	1) I & II	2) Only III	3) II & III	4) Only I									
2.	Assertion A : Geitonogamy & Xenogamy can take place in Cocos												
	Reason R : Cocos is monoecious plant. Pollen may be from same or different												
	plant.			c									
	 Both A and R are true and R is the correct explanation of A. Both A and R are true but R is not the correct explanation of A. 												
	3) A is true, R is false												
	4) A is false, R is true												
3.	Synchronization of polle	n and pistil maturat	ion takes place in										
	A. Viola	B. Oxalis	C. Commelina	D. Solanum									
	1. A, B, C 2. On	ly C 3. On	ly D 4. A,	С									
4.	True statement regardin	g anemophilous flov	vers										
	I. It is the most common n	nethod of pollination											
	II. Stigmas may be feather	у											
	III. Single seeded fruits ar	e a character											
	IV. Sticky pollen grains to stick easily to stigma												
	1. I & II	2. II & III	3. III & IV	4. IV & I									
5.	Both chasmogamous and	l cleistogamous flow	ers are seen in										
	1. Maize	2. Vallisneria	3. Zostera	4. Viola									
6.	Cross pollination but sin	nilar to self pollination	on takes place in										
	1. Dioecious plants2. Bisexual flowers												
	3. Monoecious plants	4. Unisexual flower	S										
7.	Assertion A : In Commel	<i>ina</i> always self polli	nation takes place.										
	Reason R : <i>Commelina</i> s	hows cleistogamous	flowers.										
	1) Both A and R are true a	and R is the correct ex	planation of A.										
	2) Both A and R are true b	out R is not the correc	t explanation of A.										
	3) A is true, R is false												
	4) A is false, R is true												

8.	Pollination in whi	ch maximum gene	etic variations ar	e seen is								
	1) Geitonogamy	2) Autogat	my 3) Xen	ogamy	4) Cleistogamy							
9.	Enormous amoun	t and light weight	pollen grains ar	e produced	in							
	1. Anemophilous f	lowers	2. Ento	2. Entomophilous flowers								
	3. Ornithophilous f	flowers	4. Нур	o hydrophil	ous flowers							
10.	Wind pollination	is seen in										
	1. Mango	2. Cucumber	3. Grass	4. Oi	nion							
11.	Pollination in water plants like water hyacinth and water lily is											
	1. Hydrophily	2. Anemoj	phily									
	3. Zoophily	4. Epi hyd	rophily		6							
12.	Epi hydrophily is				•							
	1. Pollination in flo	owers floating on w	ater	•								
	2. Floating pollen	responsible for polli	ination									
	3. Pollination takin	ng place on the surfa	ace of the water									
	4. Pollination takin	ng place inside the w	vater									
13.	Assertion (A): Wa	ater pollinated pla	nts do not produ	ce nectar								
	Reason(R): Necta	r production is a v	vaste process for	• water poll	ination							
	1) Both A and R and	re true and R is the	correct explanation	on of A.								
	2) Both A and R and	re true but R is not t	the correct explan	ation of A.								
	3) A is true, R is fa	llse										
	4) A is false, R is t	rue										
14.	Characteristic fea	ture of plants poll	inated by flies a	nd beetles is	S							
	1. Flowers emanate	e foul smell.	2. Aqu	uatic plants								
	3. Flowers are cold	ourless	4. Flow	4. Flowers with short styles								
15.	Bat pollination is	called as										
	1. Ornithophily	2. Ophiopl	hily									
	3. Entemophily	4. Chiropte	erophily									
16.	Contrivance in Gl	loriosa is										
	1. Dicliny2. Heterostyly											
	3. Dichogamy	4. Herkoga	amy									
17.	Genetic mechanis	m which prevents	self sterility is									
	1. Monoecious	2. Protandry	3. Self sterilit	У	4. Cleistogamy							

18.	Dicliny is a contrivance for preventing											
	1) Autogamy	2) Xen	ogamy	3) Ge	itonogamy	4) Cr	oss pollination					
19.	In chasmogamou	s flowers										
	1) Always self pol	llination			2) Always o	cross po	ollination					
	3) Both self & Cro	oss pollina	ation.		4) Neither self nor cross pollination.							
20.	Pollination in Yu	<i>cca</i> is by					\sim					
	1) Insects	2) Win	d		3) Water		4) Mammals					
21.	If pollination occurs beneath the surface of water, it is											
	1. Epihydrophily		2. Endohydi	rophily			6					
	3. Mesohydrophil	у	4. Hypohyd	rophily	ly 🔨							
22.	Pollen tube is ma	de up of			•	\bigcirc						
	1. Cellulose and h	emicellul	oses		2. Sporopollenin							
	3. Lipids and prote	eins		4. Cellulose and lignin								
23.	At the time of ent	try of pol	len tube int	o ovule								
23.24.25.	1) Generative cell	disappear	rs.	2) Generative cell divides into gametes								
	3) Vegetative cell	guides th	e tube.	4) Pollen tube disintegrates.								
24.	To produce 100 g	gametes, t	the number	of mici	crospore mother cells required are							
	1) 25	2) 13	\mathbf{N}	3) 12		4) 12	2.5					
25.	Pollen tube entry	[,] into eml	oryo sac in i	is								
	1) Micropylar side	e 2) Cha	lazal side	3) Th	ough Integu	ments	4) Any Side					
26.	Bagging during hybridization is											
	1. To prevent self	pollinatio	n	2. To encourage self pollination								
	3. To prevent unw	anted cro	ss pollinatio	4. To protect from sun light								
27.	In artificial hybridization emasculation is											
	1. To stop unwant	ed pollina	tion	2. To stop self pollination								
	3. To make flower	r into unis	exual	4. To encourage cross pollination								
28.	Assertion (A): Endosperm development precedes embryo development											
	Reason(R): Endosperm provides assured nutrition to the developing embryo											
	1) Both A and R a	re true an	d R is the co	orrect ex	planation of	A.						
	2) Both A and R a	re true bu	t R is not th	e correc	t explanation	n of A.						
	3) A is true, R is fa	alse										
	4) A is false, R is true											

29.	Edible portion in coconut is											
	1. Endocarp	2. Endosperm	3. Pericarp	4. Cotyledons								
30.	Example for endo	spermic seed is										
	1. Castor	2. Pea 3. H	Bean	4. Ground nut								
31.	Epicotyle termina	tes in										
	1. Radicle	2. Cotyledons	3. Plumule	4.Root cap								
32.	Persistent nucellu	s is		\sim								
	1. Perisperm	2. Coleoptiles	3. Endosperm	4. Scutellum								
33.	The scutellum is											
	1. Storage substance	e in dicots	2. Protective layer	s of radical								
	3. Single cotyledon	of monocots	4. Left over nucell	lus								
34.	Ploidy of aleurone	e layer is	•.0									
	1. Haploid	2. Diploid 3. 7	iploid 4. Tetraploid									
35.	Animal dispersed	seeds among the following	ng									
	I. Coconut	II. Grass	III. Martynia	IV. Figs								
	1. I & II	2. II & III	3. III & IV	4. II, III & IV								
36.	The longest dorma	ancy ever recorded is in	the seeds of									
	1. <i>Lodeci</i> a	2. Martynia 3. 1	<i>Lupinus</i> 4. D	ate plant								
37.	Production seeds	without fertilization is										
	1. Parthenocarpy	2. Parthenogenes	is 3. Apomixis	4. Polyembryony								
38.	Minute seeds are s	seen in										
	1. Orchids	2. Ficus	3. Phoenix	4. Mustard								
39.	True statement re											
		ot necessary to produce fr	uits									
	2. These are parthe											
	3. Seeds are with r											
	4. Seeds are perisp											
40.	Black pepper show	WS										
	-	loping into many embryo	-									
	3. Endosperm is lic	luid	4.Seeds developing	g without fertilization								

Embryology-II

Embryology-II																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2 21	1 22	1 23	2 24	4 25	3 26	4 27	3 28	1 29	3 30	3 31	3 32	2 33	1 34	4 35	4 36	3 37	1 38	3 39	1 40
<u>4</u>	22 1	23 2	24 2	23 1	20 3	27 2	20 1	29 2	30 1	3	52 1	3	34 3	33 4	3	3	38 1	39 2	2
	S				3					Š			Ś		S				