Electromagnetic Induction

Faraday's and Lenz's law

2008					
1.	A circular disc of radi	ius 0.2m is placed in a	uniform magnetic field	d of induction $\frac{1}{\pi} \left(\frac{Wb}{m^2} \right)$	
	in such a way that its	axis makes an angle of	f 60° with B. The mag	netic flux linked with	
	the disc is				
	a) 0.02 Wb	b) 0.06 Wb	c) 0.08 Wb	d) 0.01 Wb	
2.	When a flow flying a	ircraft passes over hea	nd, we sometimes notic	ce a slight shaking of	
	the picture on our TV	screen. This is due to	\wedge	•	
	a) Diffraction of the sig	nal received from the ar	ntenna		
	b) Interference of the d	irect signal received by	the antenna with the w	eak signal reflected by	
	the passing aircraft				
	c) Change of magnetic	flux occurring due to the	e passage of aircraft		
	d) Vibration created by	the passage of aircraft			
3.	Two similar circular	loops carry equal curr	ents in the same direct	tion. On moving coils	
	further apart, the elec	tric current will			
	a) Increase in both	b) Decrease in both			
	c) Remain unaltered	d) Increases in one and	decreases in the second	I	
4.	When the current cha	nnges from +2A to -2A	in 0.05s, an emf of 8V	V is induced in a coil.	
	The coefficient of self,	induction of the coil is	3		
	a) 0.2 H	b) 0.4 H	c) 0.8 H	d) 0.1 H	
5.	At time $t = 0s$, volt	age of an AC gener	ator starts from 0V	and becomes 2V at	
	time $t = \frac{1}{100\pi} s$. The	voltage keeps on incre	easing up to 100V, aft	ter which it starts to	
	decrease. Find the free	quency of the generato	r		
	a) 2 Hz	b) 5 Hz	c) 100 Hz	d) 1 Hz	
6.	According to Lenz's la	aw of electromagnetic i	induction		
	a) The induced emf is n	ot the direction opposin	g the change in magneti	c flux	
	b) The relative motion between the coil and magnet produces change in magnetic flux				
	c) Only the magnet sho	uld be moved towards c	oil		
	d) Only the coil should	be moved towards mag	net		

	is 10V and it switches off in 1 millisecond, find induced emf of inductor				
	a) $2 \times 10^4 V$	b) $1.2 \times 10^4 V$			
	c) $2 \times 10^{-4} V$	d) None of these			
8.	A wire of length 50	cm moves with a veloc	ity of 300 m min ⁻¹	, perpendicular to a magnetic	
	field. If the emf ind	uced in the wire is 2V,	the magnitude o	f the field in tesla is	
	a) 2	b) 5	c) 0.4		
	d) 2.5	e) 0.8			
9.	Whenever a magne	et is moved either towa	ards or away fro	m a conducting coil, an emf is	
	induced, the magni	tude of which is indepo	endent of		
	a) The strength of the	e magnetic field		~	
	b) The speed with w	hich the magnet is move	ed		
	c) The number of tur	rns of the coil			
	d) The resistance of	the coil		Y	
	e) The area of cross	– section of the coil			
10.	The magnetic flux	through a circuit of	resistance R cha	anges by an amount $\Delta \phi$ in a	
	time Δt . Then the total quantity of electric charge Q that passes any point in the circuit				
	during the time Δt is represented by				
	a) $Q = \frac{1}{R} \cdot \frac{\Delta \phi}{\Delta t}$	b) $Q = \frac{\Delta \phi}{R}$			
	c) $Q = \frac{\Delta \phi}{\Delta t}$	d) $Q = R \cdot \frac{\Delta \phi}{\Delta t}$			
11.	If coil is open then I	L and R become			
	a) ∞, 0	b) 0, ∞			
	a) ∞, 0c) ∞, ∞	d) 0, 0			
12.	A coil of self induct	ance 0.5mH carries a	current of 2A. Th	ne energy stored in joule is	
	a) 1.0	b) 0.001	c) 0.5	d) 0.05	
13.	What is the self ind	ductance of a coil whic	ch produces, self	induced emf of 5V, when the	
		om 3A to 2A in one mil	11: 10		

c) 5000 H

d) 50 H

The inductance of a coil is L = 10H and resistance $R = 5\Omega$. If applied voltage of battery

7.

a) 5 H

b) 5 mH

14.	A circular coil of diameter 21cm is placed in a magnetic field of induction $10^{-4}T$. The magnitude of flux linked with coil when the plane of coil makes an angle 30° with the				
	field is				
	a) $1.44 \times 10^{-6} Wb$	b) $1.732 \times 10^{-6} Wb$			
	c) $3.1 \times 10^{-6} Wb$	d) $4.2 \times 10^{-6} Wb$			
2006					
15.	The north pole of	a long horizontal bar	magnet is being bro	ought closer to a vertical	
	conducting plane	along the perpendicul	lar direction. The d	lirection of the induced	
	current in the cond	ucting plane will be		60	
	a) Horizontal	b) Vertical	C) Clockwise	D) Anticlockwise	
16.	Induced emf in the	coil depends upon			
	a) Conductivity of co	oil	b) Amount of flux		
	c) Rate of change of	linked flux	d) Resistance of co	oil	
17.	If electric flux varie	es according to $\phi = 3t^2$	+4t+2, find emf at t	= 2s	
	a) 22 V	b) 18 V	c) 20 V	d) 16 V	
18.	A bar magnet is	dropped between a	current carrying c	oil. What would be its	
	acceleration?				
	a) g downwards		b) Greater than g	downwards	
	c) Less than g down	wards	d) Bar will be stati	ionary	
19.	In a closed 10Ω cir	cuit the change of flux	ϕ with respect to tin	ne t is given by the	
	equation $\phi = 2t^2 - 5$	t-1, the current at $t=0$	0.25s will be		
	a) 4 A	b) 0.04 A	c) 0.4 A	d) 1 A	
20.	Two circular, simi	lar, coaxial loops carry	y equal currents in t	he same direction. If the	
	loops are brought nearer, what will happen?				
	a) Current will incre	ase in each loop			
	b) Current will decre	ease in each loop			
	c) Current will rema	in same in each loop			
	d) Current will incre	ase in one and decrease i	in the other		
21.	A coil having 500	turns of square shape	e each of side 10 cr	m is placed normal to a	
	magnetic field which	ch is increasing at $1Ts^{-1}$.	. The induced emf is		
	a) 0.1 V	b) 0.5 V	c) 1 V	d) 5 V	

22.	In a solenoid, the number of turns is doubled, then self – inductance will become						
	a) Half	b) Double	c) $\frac{1}{4}$ times	d) Quadruple			
23.	The Lenz's law	gives					
	a) Direction of induced current						
	b) Magnitude of induced emf						
	c) Magnitude of induced current						
	d) Magnitude ar	nd direction of induced cu	rrent				
24.	A copper rod	of length l is rotated	about one end, perp	endicular to the unifo	orm		
	magnetic field	B with constant angula	r velocity ω . The indu	ced emf between two e	nds		
	of the rod is			∼ •			
	a) $\frac{1}{2}B\omega l^2$ c) $\frac{3}{2}B\omega l^2$	b) $B\omega l^2$;(C				
	c) $\frac{3}{2}B\omega l^2$	d) $2B\omega l^2$	CO.				
25.	The flux associated with coil changes from 1.35 Weber to 0.79 Weber within $\frac{1}{10}s$. Then						
	the charge produced by the earth coil. If resistance of coil is 7Ω is						
	a) 0.08 C		b) 0.8 C				
	c) 0.008 C	(6)	d) 8 C				
26.	An aeroplane	having a wing space	e of 35m flies due	north with the speed	of		
	$90 ms^{-1}$ given $B = 4 \times 10^{-5} T$. The potential difference between the tips of the wings will be						
	a) 0.013 V	b) 1.26 V	c) 12.6 V	d) 0.126 V			
27.		ductor of length 4m m	oves at a speed of 10 n	ms^{-1} . When the conduction	ctor		
	makes an angle of 30° with the direction of magnetic field of induction of $0.1Wb/m^2$						
	then induced en	mf is					
	a) 8 V	b) 4 V	c) 1 V	d) 2 V			
2004							
28.	If the current t	hrough a solenoid incre	ases at a constant rate,	then the induced curre	nt		
	a) Increases with time and is opposite to the direction of the inducing current						
	b) Is a constant and is opposite to the direction of the inducing current						

c) Increases with time and is in the direction of the inducing current

d) Is a constant and is in the direction of the inducing current

- 29. Which law follows the law of constraint of the constraint of t
 - a) Lenz's law
- b) Kirchoff's law
- c) Maxwell's law
- d) Ampere's law
- 30. A small piece of metal wire is dragged across the gap between the poles of a magnet is 0.4s. If the change in magnetic flux in the wire is $8 \times 10^{-4} Wb$, then emf induced in the wire is
 - a) $8 \times 10^{-3} V$
- b) $6 \times 10^{-3} V$
- c) $4 \times 10^{-3} V$
- d) $2 \times 10^{-3} V$

Faraday's and Lenz's law

Key

- 1) **a** 2) **c** 3) **a** 4) **d** 5) **d** 6) **b** 7) **a** 8) **e** 9) **d** 10) **b**
- 11) **b** 12) **b** 13) **b** 14) **b** 15) **c** 16) **c** 17) **d** 18) **c** 19) **c** 20) **b**
- 21) **d** 22) **d** 23) **a** 24) **a** 25) **a** 26) **d** 27) **d** 28) **b** 29) **a** 30) **a**

Solutions

1.
$$\phi = BA\cos\theta$$

$$\theta = 60^{\circ}, B = \frac{1}{\pi} Wvm^{-2}, A = \pi (0.2)^{2}$$

$$\therefore \phi = \frac{1}{\pi} \times \pi (0.2)^2 \times \cos 60^{\circ}$$

$$(0.2) \times \frac{1}{2} = 0.02 Wb$$

4. Induced emf $e - L\frac{di}{dt} = -L\frac{(-2-2)}{0.05}$

$$8 = L \frac{4}{0.05}$$

$$L = \frac{8 \times 0.05}{4} = 0.1H$$

5. The produced voltage by an AC generator is 2V at

$$t = \frac{1}{100\pi} s$$

and maximum produced voltage $(e_o) = 100V$

But, $e = e_o \sin \omega t$

$$e = 2V, t = \frac{1}{100\pi}s$$

$$e_o = 100V$$

$$\therefore 2 = 100 \sin \omega \times \frac{1}{100\pi}$$

But the time $\frac{1}{100\pi}s$ is very small, so the angle ωt is also very small. Therefore, for a small

angle

$$\sin \theta = \theta$$

$$\therefore 2 = 100 \times \omega \times \frac{1}{100\pi}$$

$$\Rightarrow 2\pi = \omega$$

or $2\pi = 2\pi n$ (n = frequency of the generator) or n = 1 Hz

7. $\phi = L$

or
$$e - \frac{d\phi}{dt} = -\frac{d}{dt}(Li)$$

or
$$e = -L\frac{di}{dt}$$

Induced current =
$$\frac{V}{R} = \frac{10}{5} = 2A$$

Circuit switches off in 1 millisecond

or
$$dt = 1 \times 10^{-3} s$$

and
$$L = 10 H$$

∴ Induced emf in inductor is
$$|e| = 10 \times \frac{2}{1 \times 10^{-3}} = 2 \times 10^4 V$$

8.
$$e = Blv$$

$$l = 50cm = 0.5m$$

$$v = 300 \,\mathrm{m \, min^{-1}}$$

$$=\frac{300}{60}=5\,ms^{-1}$$

and
$$e = 2V$$

Magnetic field
$$B = \frac{e}{lv} = \frac{2}{0.5 \times 5} = 0.8T$$

9.
$$e = -N \frac{d\phi}{dt}$$

$$e = -N \frac{d(BA)}{dt}$$

Time interval dt, depends on the speed with which the magnet is moved.

Therefore, the induced emf is independent of the resistance of the coil.

10.
$$e = \frac{\Delta \phi}{\Delta t}$$

and
$$i = \frac{e}{R} = \frac{\Delta \phi}{R \Delta t}$$

Charge passes through the circuit $Q = i \times \Delta t$

$$\Rightarrow Q = \frac{\Delta \phi}{R \Delta t} \times \Delta t \Rightarrow Q = \frac{\Delta \phi}{R}$$

11.
$$\phi = Li$$

Where L is proportionality constant known as self inductance.

$$\therefore L = \frac{\phi}{i} = 0$$

Again since I = 0, hence, $R = \infty$

12. When current in a coil is changing, due to opposition by the coil through its self inductance L, work done in time dt is

$$dW = P dt = eI dt = LI dt$$
 (as $e = L\frac{dI}{dt}$)

So, work done in establishing a current I in the coil is

$$W = \int_o^I LI \, dI = \frac{1}{2} LI^2$$

This work is stored as magnetic potential energy U

Here
$$I = 2A$$
, $L = 0.5$ mH

$$U = \frac{1}{2} \times 0.5 \times 10^{-3} \times (2)^2 = 0.001 \text{ J}$$

13.
$$e = 5V$$
, $dI = 2 - 3 = -1A$

$$dt = 1ms = 1 \times 10^{-3} s$$

As
$$e = -L \frac{dI}{dt}$$

As
$$e = -L\frac{dI}{dt}$$

$$\therefore L = -e\frac{dt}{dI} = \frac{5 \times 1 \times 10^{-3}}{1}$$

$$5 \times 10^{-3} H = 5mH$$

$$e = -\frac{d\phi_B}{dt}$$

$$5 \times 10^{-3} H = 5 mH$$

16.
$$e = -\frac{d\phi_B}{dt}$$

17.
$$\phi = 3t^2 + 4t + 2 \Rightarrow emf = \frac{d\phi}{dt} = 6t + 4$$

$$\therefore \left| \frac{d\phi}{dt} \right|_{t=2} = 16V$$

19.
$$\phi = 2t^2 - 5t + 1$$

Induced emf
$$e = -\frac{d\phi}{dt}$$

$$= -\frac{d}{dt}(2t^2 - 5t + 1) = -(4t - 5)$$

$$\therefore \text{ Current } i = \frac{e}{R} = -\frac{(4t - 5)}{10}$$

At t = 0.25s
$$i = -\frac{(4 \times 0.25 - 5)}{10} = -\frac{(-4)}{10} = 0.4A$$

21.
$$\phi = BA \cos \theta$$

$$\theta = 0^{\circ}, B = 1Ts^{-1}$$

$$A = (10)^2 \, cm^2 = 10^{-2} \, m^2$$

$$\therefore \theta = 1 \times 10^{-2}$$

$$e = -N\frac{\Delta\phi}{\Delta r} = -500 \times 10^{-2} = -5V$$

22. For a solenoid of length *l*, area of cross – section A, having B closed wound turns,

$$L = \frac{\mu_o N^2 A}{l}$$

When N' = 2N

$$L' = \frac{\mu_o (2N)^2 A}{l} = \frac{4\mu_o N^2 A}{l} = 4L$$

Hence, when number of turns is doubled then self inductance becomes quadruple.

24
$$e = B \times (rate of change of area of loop)$$

If θ is the angle between the rod and the radius of circle at P at time t, area of the arc formed by the rod and radius at $P = \frac{1}{2}l^2\theta$

where l is radius of the circle

$$e = B \times \frac{d}{dt} \left(\frac{1}{2} l^2 \theta \right)$$

$$= \frac{1}{2}B.l^2\frac{d\theta}{dt}$$

$$=\frac{1}{2}Bl^2\omega$$

$$= \frac{1}{2}Bl^2\omega \qquad \left(\because \omega = \frac{d\theta}{dt}\right)$$

25. As
$$I = \frac{e}{R} = \frac{d\phi}{Rdt}$$

or
$$Idt = \frac{d\phi}{R}$$

Integrating
$$\int Idt = \int \frac{d\phi}{R}$$

or
$$q = \frac{\phi}{R}$$

If coil contains N turns, then q =

If there is flux change $\Delta \phi$, then q =

$$= \frac{1}{7} \times (1.35 - 0.79)$$

$$= 0.08 \text{ V}$$

The induced emf is given by 26.

$$= Bvl = 4 \times 10^{-5} \times 90 \times 35$$

$$= 0.126 \text{ V}$$

Induced emf is given by 27.

$$e = Bvl \sin \theta = 0.1 \times 10 \times 4 \sin 30^{\circ}$$

$$e = 2V$$

30.
$$e = -\frac{d\phi}{dt}$$

www.sakshieducation.com

 $d\phi - 8 \times 10^{-4} Wb$, dt = 0.4s

$$\Rightarrow e = -\frac{8 \times 10^{-4}}{0.4} = -2 \times 10^{-3} V$$

Self and Mutual Inductions

2011

1.	What is the self inductance of solenoid of length 31.4c	m, area of cross – section $10^{-3} m^2$
	and total number of turns 10^3 ?	•

- a) 4 mH
- b) 4 H

- c) 40 H
- d) 0.4 H

2. What should be the value of self inductance of an inductor that should be connected to 220V, 50Hz supply so that a maximum current of 0.9A flows through it?

- a) 11 H
- b) 2 H

- c) 1.1 H
- d) 5 H

3. In Hertz's experiment, the rods connected with an induction coil behave as

- a) An Inductor
- b) Capacitor
- c) Resistor
- d) An Induction Coil

4. A transformer has 500 primary turns and 10 secondary turns. If the secondary has a resistive load of 15Ω , the currents in the primary and secondary respectively, are

a) 0.16A, $3.2 \times 10^{-3} A$

b) $3.2 \times 10^{-3} A$, 0.16 A

c) 0.16A, 0.16A

d) $3.2 \times 10^{-3} A$, $3.2 \times 10^{-3} A$

2008

5. Two coils are placed close to each other. The mutual inductance of the pair of coils depends upon

- a) The rates at which currents are changing in the two coils
- b) Relative position and orientation of the two coils
- c) The material of the wires of the coils
- d) The currents in the two coils

6. X and T, two metallic coils are arranged in such a way that, when steady change in current flowing in X coil is 4A, change in magnetic flux associated with coil Y is 0.4Wb. Mutual inductance of the system of these coils is

- a) 0.2 h
- b) 5 H

- c) 0.8 H
- d) 0.1 H

7.	According to phenomenon of mutual inductance				
	a) The mutual inductance does not depend on the geometry of the two coils involved				
	b) The mutual indu	uctance depends o	n the intrinsic magne	tic property, like relative	
	permeability of the material				
	c) The mutual inductance is independent of the magnetic property of the material				
	d) Ratio of magnetic	flux produced by th	e coil 1 at the place of	the coil 2 and the current in	
	the coil 2 will be diffe	erent from that of the	e ratio defined by interch	nanging the coils	
2007					
8.	Two coils of self -	inductances 2mH	and 8mH are placed	so close together that the	
	effective flux in one	e coil is completely	linked with the othe	r. The mutual inductance	
	between these coils i	s			
	a) 10mH	b) 6mH	c) 4mH	d) 16mH	
			•. 0		
2006					
9.	A current of $I = 10 \text{ s}$	$\sin(100\pi t)A$ is pas	sed in first coil, which	n induce a maximum emf	
	$5\pi V$ in second coil.	The mutual inducta	ance between the coils i	is	
	a) 10mH	b) 15mH	c) 25mH	d) 20mH	
	e) 5mH	+, 0			
2005					
10.	The induction coil works on the principle of				
10.	The induction coil w	orks on the princip			
10.	a) Self Induction	or ks of the princip	b) Mutual Induct	ion	
10.		oraș on incepanici			
11.	a) Self Inductionc) Ampere's Rule	3/2	b) Mutual Induct d) Fleming's Rig		
	a) Self Inductionc) Ampere's RuleTwo coils have mu	itual inductance	b) Mutual Induct d) Fleming's Rig 0.005H. The current	ht Hand Rule	
	a) Self Inductionc) Ampere's RuleTwo coils have mu	itual inductance on $I = I_o \sin \omega t$ who	b) Mutual Induct d) Fleming's Rig 0.005H. The current	ht Hand Rule changes in the first coil	
	a) Self Inductionc) Ampere's RuleTwo coils have multipleaccording to equation	itual inductance on $I = I_o \sin \omega t$ who	b) Mutual Induct d) Fleming's Rig 0.005H. The current	ht Hand Rule changes in the first coil	
	a) Self Induction c) Ampere's Rule Two coils have my according to equation value of emf in the set a) 12π	itual inductance on $I = I_o \sin \omega t$ who econd coil is b) 8π	b) Mutual Induct d) Fleming's Rig D.005H. The current ere $I_o = 10A$ and $\omega = 10$ c) 5π	ht Hand Rule changes in the first coil $00\pi rad s^{-1}$. The maximum	
11.	a) Self Induction c) Ampere's Rule Two coils have my according to equation value of emf in the set a) 12π	itual inductance on $I = I_o \sin \omega t$ who econd coil is b) 8π	b) Mutual Induct d) Fleming's Rig D.005H. The current ere $I_o = 10A$ and $\omega = 10$ c) 5π	th Hand Rule changes in the first coil $00\pi rad s^{-1}$. The maximum	
11.	a) Self Induction c) Ampere's Rule Two coils have my according to equation value of emf in the sean 12π Two inductors each will be	itual inductance on $I = I_o \sin \omega t$ who econd coil is b) 8π of inductance L and	b) Mutual Induct d) Fleming's Rig 0.005H. The current ere $I_o = 10A$ and $\omega = 10$ c) 5π re joined in parallel. The	th Hand Rule changes in the first coil $00\pi rad s^{-1}$. The maximum d) 2π heir equivalent inductance	
11.	 a) Self Induction c) Ampere's Rule Two coils have my according to equation value of emf in the standard and the standard a	itual inductance on $I = I_o \sin \omega t$ who econd coil is b) 8π of inductance L and	b) Mutual Induct d) Fleming's Rig 0.005H. The current ere $I_o = 10A$ and $\omega = 10$ c) 5π re joined in parallel. The c) L	th Hand Rule changes in the first coil $00\pi rad s^{-1}$. The maximum d) 2π heir equivalent inductance	
11.	 a) Self Induction c) Ampere's Rule Two coils have my according to equation value of emf in the standard and the standard a	itual inductance on $I = I_o \sin \omega t$ who econd coil is b) 8π of inductance L and	b) Mutual Induct d) Fleming's Rig 0.005H. The current ere $I_o = 10A$ and $\omega = 10$ c) 5π re joined in parallel. The c) L	th Hand Rule changes in the first coil $00\pi rad s^{-1}$. The maximum d) 2π heir equivalent inductance	
11. 12.	 a) Self Induction c) Ampere's Rule Two coils have my according to equation value of emf in the standard and the standard a	itual inductance on $I = I_o \sin \omega t$ who econd coil is b) 8π of inductance L and b) $\frac{L}{2}$ ing a primary coil of	b) Mutual Induct d) Fleming's Rig 0.005H. The current ere $I_o = 10A$ and $\omega = 10$ c) 5π re joined in parallel. The c) L	th Hand Rule changes in the first coil $00\pi rad s^{-1}$. The maximum d) 2π heir equivalent inductance	

www.sakshieducation.com

Self and Mutual Inductions

Key

- 1) 2) d 3) 5) b 6) d 7) b 8) c 9) e 10) b a 4) b
- 11) c 12) b 13) d

1.
$$A = 10^{-3} m^2$$

$$l = 31.4cm = 31.4 \times 10^{-2} m$$
 and $n = 10^3$

$$\phi = Lo$$

$$BA = Li$$

$$\mu_{o}ni A = Li$$

$$L = \frac{4\pi \times 10^{-7} \times 10^{3} \times 10^{-3}}{31.4 \times 10^{-2}} = 4 \text{ mH}$$

2.
$$|e| = \frac{Ldi}{dt} = 220 = L \times \frac{0.9}{1/50}$$

$$L = \frac{4\pi \times 10^{-7} \times 10^{3} \times 10^{-3}}{31.4 \times 10^{-2}}$$
2. $|e| = \frac{Ldi}{dt} = 220 = L \times \frac{0.9}{1/50}$
4. $\frac{N_s}{N_p} = \frac{i_p}{i_s}$ Or $\frac{10}{500} = \frac{i_p}{i_s}$

$$\Rightarrow \frac{i_p}{i_s} = \frac{1}{50} \Rightarrow i_s = 50i_p$$

This condition is satisfied only when current in primary $3.2 \times 10^{-3} A$ and in secondary 0.16A.

6.
$$\phi_Y \propto I_X$$

 ϕ_Y = change in magnetic flux in coil Y, www.sakshieducation.com I_X = change in current in coil X,

M = mutual inductance,

$$\Rightarrow \phi_Y = MI_X$$
(i)

Given,
$$I_X = 4A$$

$$\phi_V = 0.4Wb$$

Or
$$0.4 = M \times 4$$

$$\Rightarrow M = \frac{0.4}{4} = 0.1H$$

8.
$$M_{12} = \frac{N_2 \phi_{B_2}}{i_1}$$
 and $M_{21} = \frac{N_1 \phi_{B_1}}{i_2}$

$$L_1 = \frac{N_1 \phi_{B_1}}{i_1}$$
 and $L_2 = \frac{N_2 \phi_{B_2}}{i_2}$

$$\phi_{B_2} = \phi_{B_1}$$

Since $M_{12} = M_{21} = M$,

Or
$$0.4 = M \times 4$$

$$\Rightarrow M = \frac{0.4}{4} = 0.1H$$

$$M_{12} = \frac{N_2 \phi_{B_2}}{i_1} \text{ and } M_{21} = \frac{N_1 \phi_{B_1}}{i_2}$$

$$L_1 = \frac{N_1 \phi_{B_1}}{i_1} \text{ and } L_2 = \frac{N_2 \phi_{B_2}}{i_2}$$

$$\phi_{B_2} = \phi_{B_1}$$
Since $M_{12} = M_{21} = M$,
$$M_{12}M_{21} = M^2 = \frac{N_1 N_2 \phi_{B_1} \phi_{B_2}}{i_1 i_2} = L_1 L_2$$

$$\therefore M_{\text{max}} = \sqrt{L_1 L_2}$$

$$\therefore M_{\max} = \sqrt{L_1 L_2}$$

But,
$$L_1 = 2mH$$
, $L_2 = 8mH$

$$\therefore M_{\text{max}} = \sqrt{2 \times 8} = \sqrt{16} = 4mH$$

9.
$$e = -\frac{Mdi}{dt} \Rightarrow M = -\frac{e}{di/dt}$$

$$e = 5\pi V$$
 and $i = 10\sin(100\pi t)$,

$$\therefore \left(\frac{di}{dt}\right)_{\text{max}} = 10 \times 100\pi$$

$$M = -\frac{5\pi}{10 \times 100\pi} = -5 \times 10^{-3} H = 5mH$$

M = 0.005 H and $I_o = 10A$ 11.

$$\omega = 100 \pi rad s^{-1}$$

$$I = I_o \sin \omega t$$

or
$$\frac{dI}{dt} = \frac{d}{dt} (I_o \sin \omega t) = I_o \cos \omega t \cdot \omega = 10 \times 1 \times 100\pi = 1000\pi$$

$$\therefore e = M \times \frac{di}{dt} = 0.05 \times 1000 \times \pi = 5\pi V$$
12.
$$L_1 = L \quad \text{and} \quad L_2 = L$$

$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} = \frac{1}{L} + \frac{1}{L} = \frac{2}{L}$$

$$\therefore L_{eq} = \frac{L}{2}$$
13.
$$M = \frac{\phi}{I_p} = \frac{\mu_o \mu_t N_1 N_2 A I_p}{II_p} = \frac{\mu_o \mu_v N_1 N_2 A}{I}$$

$$\therefore e = M \times \frac{di}{dt} = 0.05 \times 1000 \times \pi = 5\pi V$$

$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} = \frac{1}{L} + \frac{1}{L} = \frac{2}{L}$$

$$\therefore L_{eq} = \frac{L}{2}$$

13.
$$M = \frac{\phi}{I_P} = \frac{\mu_o \mu_r N_1 N_2 A I_P}{l I_P} = \frac{\mu_o \mu_r N_1 N_2 A}{l}$$

Application www. Sakshiedu Cation Commens ormer)

2011					
1. Two solenoids of equal number of turns have their lengths and the radii					
	ratio 1: 2. The ratio of their self – inductance will be				
	a) 1:2	b) 2:1	c) 1 : 1		
	d) 1:4	e) 1:3			
2.	Assertion (A)	: An electric motor will ha	ve maximum efficier	cy when back emf becomes	
	equal to half	of applied emf.			
	Reason (R): E	Efficiency of electric motor	depends only on ma	gnitude of back emf.	
	a) Both asserti	on and reason are true and re	eason is the correct ex	planation of assertion.	
	b) Both asserti	ion and reason are true but re	eason is not the correc	t explanation of assertion.	
	c) Assertion is	true but reason is false.	·. C		
	d) Both asserti	ion and reason are false.			
3.	A transforme	er is used to light a 100W	and 110V lamp from	n a 220V main. If the main	
	current is 0.5	A, the efficiency of the tran	sformer is approxin	nately	
	a) 30%	b) 50%	c) 90%	d) 10%	
4.	An electric m	notor runs on DC source o	f emf 200V and dra	ws a current of 10A. If the	
	efficiency be 4	40%, then the resistance of	armature is		
	a) 2Ω	b) 8Ω			
	c) 12Ω	d) 16Ω			
5.	Which quanti	ity is increased in step – do	wn transformer?		
	a) Current	b) Voltage	c) Power	d) Frequency	
6.	In a step – u	ip transformer, the turn	ratio is 1: 2. A Lec	lanche cell $(emf = 1.5V)$ is	
	connected acr	ross the primary. The volta	ge developed in the s	secondary would be	
	a) 3.0 V	b) 0.75 V	c) 1.5 V	d) Zero	
7.	The emf indu	ced in a secondary coil is 2	0000V, when the cur	rrent breaks in the primary	

coil. The mutual inductance is 5H and the current reaches to zero in 10^{-4} s in the

c) 0.6 A

d) 0.8 A

primary. The maximum current in the primary before it breaks is

b) 0.4 A

a) 0.1 A

	through the other. T	he primary coil has N	N_P turns in it and whe	en a current 2A flows
	through it the flux in it is $2.5 \times 10^{-4} Wb$. If the secondary coil has 12 turns the mutual			
	inductance of the coil	ls is (assume the second	lary coil is in open circ	uit)
	a) $10 \times 10^{-4} H$	b) $15 \times 10^{-4} H$		
	c) $20 \times 10^{-4} H$	d) $25 \times 10^{-4} H$		
9.	A current of 5A is flo	owing at 220V in the p	orimary coil of a trans	former. If the voltage
	produced in the seco	ondary coil is 2200V ar	nd 50% of power is los	st, then the current in
	secondary will be			
	a) 2.5 A	b) 5 A	c) 0.25 A	d) 0.5 A
10.	An electric generator	is based on		
	a) Faraday's law of ele	ectromagnetic induction		•
	b) Motion of charged J	particles in electromagne	etic field	
	c) Newton's laws of m	notion		
	d) Fission of uranium	by slow neutrons		
11.	The primary and sec	ondary coils of a trans	former have 50 and 15	500 turns respectively.
	If the magnetic flux	ϕ linked with the prim	ary coil is given by ϕ =	$\phi_o + 4t$, where ϕ is in
	weber, t is time in second and ϕ_o is constant, the output voltage across the secondary			
	coil is			
	a) 90 V	b) 120 V	c) 220 V	d) 30 V
12.	The core of a transfo	rmer is laminated beca	use	
	a) Energy losses due to	o eddy currents may be i	minimised	
	b) The weight of the tr	ansformer may be reduc	eed	
	c) Rusting of the core	may be prevented		
	d) Ratio of voltage in J	primary and secondary n	nay be increased	
13.	In step – up transfe	ormer, relation betwee	en number of turns i	n primary $\left(N_{p} ight)$ and
	number of turns in se	econdary (N_s) coils is		
	a) N_s is greater than N_s	N_p	b) N_p is greater than	N_s
	c) N_s is equal to N_p		$d) N_p = 2N_s$	

Two coils are wound on the same iron rod so that the flux generated by one passes

8.

14.	Use of eddy currents is done in the following except				
	a) Moving Coil Galvanometer		b) Electric Brakes		
	c) Induction Motor		d) Dynamo		
15.	A six pole generator	with fixed field excitati	ion develops an emf of	100V, when operating	
	at 1500 rpm. At wha	t speed must it rotate to	o develop 120 V?		
	a) 1200 rpm	b) 1800 rpm	c) 1500 rpm	d) 400 rpm	
16.	A step – down trans	sformer reduces the vo	oltage of a transmissio	n line from 2200 V to	
	220 V. The power d	elivered by it is 880 W	and its efficiency is 88	3%. The input current	
	is				
	a) 4.65 mA	b) 0.045 A	c) 0.45 A	d) 4.65 A	
17.	Fleming's left and ri	ght hand rule are used	in	•	
	a) DC motor and AC	generator	b) DC generator and A	AC motor	
	c) DC motor and DC	generator	d) Both rules are same, anyone can be used		
18.	Voltage in the secondary coil of a transformer does not depend upon				
	a) Frequency of the source		b) Voltage in the Primary Coil		
	c) Ratio of number of turns in the two coils d) Both (b) and (c)				
19.	When power is drawn from the secondary coil of the transformer, the dynamic				
	resistance				
	a) Increases	C	b) Decreases		
	c) Remains unchange	d	d) Changes erratically	/	
2006					
20.	Core of transformer	is made up			
	a) Soft Iron	b) Steel	c) Iron	d) Alnico	
21.	Transformer is base	d upon the principle of			
	a) Self Induction	b) Mutual Induction	c) Eddy Current	d) None of these	
22.	A transformer has an efficiency of 80%. It works at 4kW and 100V. If secondary				
	voltage is 240V, the	current in primary coil	is		
	a) 10 A	b) 4 A	c) 0.4 A	d) 40 A	
23.	In a step – up transf	ormer, the number of t	urns in		
	a) Primary are less		b) Primary are more		
	c) Primary and secondary are equal		d) Primary are infinite		

24.	A step up transformer operates on a 230V line and supplies to a load of 2A. The ratio of				
	primary and secondary windings is 1: 35. Determine the primary current				
	a) 8.8 A	b) 12.5 A	c) 25 A	d) 50 A	
2005					
25.	The turn ratio of a t	ransformer is given as 2	2:3. If the current th	rough the primary coil	
	is 3A, thus calculate	the current through loa	ad resistance		
	a) 1 A	b) 4.5 A	c) 2 A	d) 1.5 A	
26.	A transformer with	efficiency 80% works a	nt a 4kW and 100V. If	the secondary voltage	
	is 200V then the prin	nary and secondary cui	rrents are respectively		
	a) 40 A, 16 A	b) 16 A, 40 A	c) 20 A, 40 A	d) 40 A, 20 A	
	5) 40 A, 10 A			•	
27.	In the induction coil,	across secondary coil t	the output voltage is p	ractically	
	a) Unidirectional, Hig	h, Intermittent	b) Unidirectional, Lo	w, Intermittent	
	c) Unidirectional, Hig	h, Constant	d) Unidirectional, Lo	w, Constant	
28.	The number of turn	ns in primary and seco	ondary of a transforr	ner are 5 and 10 and	
	mutual inductance of	f a transformer is 25H	. Now, the number of	turns in primary and	
	secondary are 10 and	d 5, the new mutual ind	uctance will be		
	a) 6.25 H	b) 12.5 H	c) 25 H	d) 50 H	
29.	If a transformer of	an audio amplifier has	output impedance 80	000Ω and the speaker	
	has input impedance	${ m e}$ of 8Ω , the primary	y and secondary turn	s of this transformer	
	connected between t	he output of amplifier a	and to loud speaker sh	ould have the ratio	
	a) 1000:1	b) 100 : 1	c) 1:32	d) 32:1	
30.	The coefficient of m	utual inductance betwe	een the primary and s	econdary of the coil is	
	5H. A current of 10A	is cut – off in 0.5s. The	e induced emf is		
	a) 1 V	b) 10 V	c) 5 V	c) 100 V	
31.	Quantity that remain	ns unchanged in a trans	sformer is		
	a) Voltage	b) Current	C) Frequency	d) None of these	
2004					
32.	Eddy currents are pr	roduced in			
	a) Induction Furnace		b) Electromagnetic B	rakes	
	c) Speedometers		d) All of these		

- 33. Which of the following is working the ducation.com
 - a) Loudspeaker
- b) Amplifier
- c) Microphone
- d) All of these
- 34. A step up transformer has transformation ratio 3: 2. The voltage in the secondary coil, if the voltage in the primary is 30V, will be
 - a) 300 V
- b) 90 V
- c) 45 V

- d) 23 V
- 35. A transformer is having 2100 turns in primary and 4200 turns in secondary. An AC source of 120V, 10A is connected to its primary. The secondary voltage and current are
 - a) 240A, 5A
- b) 120V, 10A
- c) 240V, 10A
- d) 120V, 20A

Applications of EMI (Motor, Dynamo, Transformer)

Key

- 1) a 2) c 3) c 4) c 5) a 6) d 7) b 8) b 9) c 10) a
- 11) b 12) a 13) a 14) d 15) b 16) c 17) c 18) a 19) a 20) a
- 21) b 22) d 23) a 24) d 25) c 26) a 27) a 28) c 29) a 30) d
- 31) c 32) d 33) b 34) c 35) a

Solutions

$$1. L = \frac{\mu_o N_2 \pi r^2}{\lambda}$$

$$\therefore \frac{L_1}{L_2} = \left(\frac{r_1}{r_2}\right)^2 \left(\frac{\lambda_2}{\lambda_1}\right) = \left(\frac{1}{2}\right)^2 \times \left(\frac{2}{1}\right)^2$$

$$\frac{L_1}{L_2} = \frac{1}{2}$$

3.
$$\eta = \frac{\text{Output power}}{\text{Input power}}$$

$$\eta = \frac{V_s I_s}{V_p I_p}$$

But,
$$V_s I_s = 100W$$
, $V_p = 220V$, $I_p = 0.5A$

$$\therefore \eta = \frac{100}{220 \times 0.5} = 0.90 = 90\%$$

4. Input power =
$$VI = 200 \times 10 = 2000W$$

Output power =
$$\frac{40}{100} \times 2000$$

$$= 800 \text{ W}$$

Power loss in heating the armature= 2000 - 800 = 1200 W

$$\therefore I^2 R = 1200$$

or
$$R = \frac{1200}{I^2} = \frac{1200}{10 \times 10}$$

or
$$R = 12\Omega$$

7.
$$e = \frac{Mi_{\text{max}}}{t}$$

or
$$20000 = 5 \times \frac{i_{\text{max}}}{10^{-4}}$$

or
$$i_{\text{max}} = \frac{20000 \times 10^{-4}}{5} = 0.4 A$$

or
$$i_{\text{max}} = \frac{20000 \times 10^{-4}}{5} = 0.4A$$

8. $M = \frac{N_s \phi}{i} = \frac{12 \times 2.5 \times 10^{-4}}{2} = 15 \times 10^{-4} H$

9.
$$V_p = 220V$$
, $V_s = 2200V$, $I_p = 5A$ and

Power loss = 50%

$$\eta\% = \frac{P_{\text{out}}}{P_{\text{in}}} \times 100 = \frac{V_s I_s}{V_p I_p} \times 100$$

$$50 = \frac{2200 \times I_s}{220 \times 5} \times 100$$

$$I_s = 0.25A$$

The magnetic flux linked with the primary coil is given by 11.

$$\phi = \phi_o + 4t$$

So, voltage across primary

$$V_p = \frac{d\phi}{dt} = \frac{d}{dt}(\phi_o + 4t) = 4V \quad \text{(as } \phi_o = \text{constant)}$$
Also, we have
$$N_p = 50 \text{ and } N_s = 1500$$
From relation,
$$\frac{V_s}{V_p} = \frac{N_s}{N_p}$$
or
$$V_s = V_p \frac{N_s}{N_p} = 4\left(\frac{1500}{50}\right) = 120 \text{ V}$$
Speed = $\frac{120}{100} \times 1500 \text{ rpm} = 1800 \text{ rpm}$

$$\eta = \frac{\text{Output power}}{\text{Input power}}$$

$$N_p = 50$$
 and $N_s = 1500$

$$\frac{V_s}{V_p} = \frac{N_s}{N_p}$$

or
$$V_s = V_p \frac{N_s}{N_p} = 4 \left(\frac{1500}{50} \right) = 120 \text{ V}$$

- 15.
- $\eta = \frac{\text{Output power}}{\text{Input power}}$

$$\Rightarrow \frac{88}{100} = \frac{880}{P_i}$$

$$\Rightarrow P_i = 1000W$$

$$I_p = \frac{P_i}{V_i} = \frac{1000}{2200} = 0.45A$$

22.
$$P_i = V_p I_p$$

or
$$I_p = \frac{P_i}{V_p} = \frac{4000}{100} = 40A$$

$$24. \qquad \frac{I_P}{I_S} = \frac{N_S}{N_P}$$

or
$$I_P = I_S \times \frac{N_S}{N_P} = 2 \times 25 = 50A$$

25.
$$V_s \times i_s = V_p \times i_p$$

or
$$I_p = I_S \times \frac{N_S}{N_p} = 2 \times 25 = 50A$$

25. $V_s \times i_s = V_p \times i_p$

$$\Rightarrow \frac{i_p}{i_s} = \frac{V_s}{V_p} = \frac{N_s}{N_p} = \text{transformer ratio}$$

But, $\frac{N_p}{N_s} = \frac{2}{3}$, $i_p = 3A$

$$\Rightarrow i_s = \frac{N_s}{N_s} i_p = \frac{2}{3} \times 3 = 2A$$

26. $\eta = \frac{\text{Output power}}{\text{Input power}}$

or $\eta = \frac{V_s I_s}{V_p I_p}$

$$\therefore \frac{80}{100} = \frac{200 \times I_s}{4000}$$

or $I_s = 16A$

Also $V_p I_p = 4000$ or $I_p = \frac{4000}{100} = 40A$

But,
$$\frac{N_p}{N_s} = \frac{2}{3}$$
, $i_p = 3A$

$$\Rightarrow i_s = \frac{N_s}{N_s} i_p = \frac{2}{3} \times 3 = 2A$$

26.
$$\eta = \frac{\text{Output power}}{\text{Input power}}$$

or
$$\eta = \frac{V_s I_s}{V_p I_p}$$

$$\therefore \frac{80}{100} = \frac{200 \times I_s}{4000}$$

or
$$I_s = 16A$$

Also
$$V_p I_p = 4000$$
 or $I_p = \frac{4000}{100} = 40A$

28.
$$M \propto N_1 N_2$$

$$\therefore \frac{M_1}{M_2} = \frac{N_1 N_2}{N'_1 N'_2}$$

$$\frac{25}{M_2} = \frac{5 \times 10}{10 \times 5}$$

Or
$$M_2 = 25H$$

29.
$$e_p = -N_o \frac{\Delta \phi}{\Delta t}$$

$$e_s = -N_s \frac{\Delta \phi}{\Delta t}$$

Also
$$e = iR$$

$$\therefore \frac{R_p}{R_s} = \frac{N_p}{N_s}$$

$$R_s = 8000 \Omega, R_p = 8 \Omega$$

Also
$$e = iR$$

$$\therefore \frac{R_p}{R_s} = \frac{N_p}{N_s}$$

$$R_s = 8000 \Omega, R_p = 8\Omega$$

$$\therefore \frac{N_s}{N_p} = \frac{R_s}{R_p} = \frac{8000}{8} = \frac{1000}{l}$$

$$e = -M \frac{di}{dt}$$

$$M = 5H, di = 10A, dt = 0.5s$$

30.
$$e = -M \frac{di}{dt}$$

$$M = 5H$$
, $di = 10A$, $dt = 0.5s$

$$M = 5H, di = 10A, dt = 0.5s$$

$$\therefore e = -5 \times \frac{10}{0.5} = -100V$$

$$\frac{E_s}{E_p} = \frac{N_s}{N_p}$$

$$34. \qquad \frac{E_s}{E_p} = \frac{N_s}{N_p}$$

or
$$E_s = E_p \frac{N_s}{N_p} = 30 \times \frac{3}{2} = 45V$$

35.
$$V_s \times i_s = V_p \times i_p$$

$$\frac{i_p}{i_s} = \frac{V_s}{V_p} = \frac{N_s}{N_p} = r$$

$$\therefore V_s = \frac{N_s}{N_p} \times V_p$$

$$V_p = 120V, N_s = 4200, N_p = 2100$$

$$\therefore V_s = \frac{4200}{2100} \times 120$$

$$V_s = 240V$$

and
$$\frac{I_s}{I_p} = \frac{N_p}{N_s}$$

$$\Rightarrow I_s = \frac{N_p}{N_s} \times I_p = \frac{2100}{4200} \times 10 = 5A$$

www.sakshieducation.com