Electromagnetic Induction

Faraday's and Lenz's law

2008

1. A circular disc of radius 0.2 m is placed in a uniform magnetic field of induction $\frac{1}{\pi}\left(\frac{W b}{m^{2}}\right)$ in such a way that its axis makes an angle of 60° with B. The magnetic flux linked with the disc is
a) 0.02 Wb
b) 0.06 Wb
c) 0.08 Wb
d) 0.01 Wb
2. When a flow flying aircraft passes over head, we sometimes notice a slight shaking of the picture on our TV screen. This is due to
a) Diffraction of the signal received from the antenna
b) Interference of the direct signal received by the antenna with the weak signal reflected by the passing aircraft
c) Change of magnetic flux occurring due to the passage of aircraft
d) Vibration created by the passage of aircraft
3. Two similar circular loops carry equal currents in the same direction. On moving coils further apart, the electric current will
a) Increase in both
b) Decrease in both
c) Remain unaltered
d) Increases in one and decreases in the second
4. When the current changes from +2 A to -2 A in 0.05 s , an emf of 8 V is induced in a coil. The coefficient of self, induction of the coil is
a) 0.2 H
b) 0.4 H
c) 0.8 H
d) 0.1 H
5. At time $t=0$ s, voltage of an $A C$ generator starts from $0 V$ and becomes $2 V$ at time $t=\frac{1}{100 \pi} s$. The voltage keeps on increasing up to 100 V , after which it starts to decrease. Find the frequency of the generator
a) 2 Hz
b) 5 Hz
c) 100 Hz
d) 1 Hz
6. According to Lenz's law of electromagnetic induction
a) The induced emf is not the direction opposing the change in magnetic flux
b) The relative motion between the coil and magnet produces change in magnetic flux
c) Only the magnet should be moved towards coil
d) Only the coil should be moved towards magnet
7. The inductance of a coil is $L=10 \mathrm{H}$ and resistance $R=5 \Omega$. If applied voltage of battery is 10 V and it switches off in 1 millisecond, find induced emf of inductor
a) $2 \times 10^{4} \mathrm{~V}$
b) $1.2 \times 10^{4} \mathrm{~V}$
c) $2 \times 10^{-4} \mathrm{~V}$
d) None of these
8. A wire of length 50 cm moves with a velocity of $300 \mathrm{mmin}^{-1}$, perpendicular to a magnetic field. If the emf induced in the wire is 2 V , the magnitude of the field in tesla is
a) 2
b) 5
c) 0.4
d) 2.5
e) 0.8
9. Whenever a magnet is moved either towards or away from a conducting coil, an emf is induced, the magnitude of which is independent of
a) The strength of the magnetic field
b) The speed with which the magnet is moved
c) The number of turns of the coil
d) The resistance of the coil
e) The area of cross - section of the coil
10. The magnetic flux through a circuit of resistance R changes by an amount $\Delta \phi$ in a time Δt. Then the total quantity of electric charge \mathbf{Q} that passes any point in the circuit during the time Δt is represented by
a) $Q=\frac{1}{R} \cdot \frac{\Delta \phi}{\Delta t}$
b) $Q=\frac{\Delta \phi}{R}$
c) $Q=\frac{\Delta \phi}{\Delta t}$
Cd) $Q=R \cdot \frac{\Delta \phi}{\Delta t}$
11. If coil is open then L and R become
a) $\infty, 0$
b) $0, \infty$
c) ∞, ∞
d) 0,0
12. A coil of self inductance 0.5 mH carries a current of 2 A . The energy stored in joule is
a) 1.0
b) 0.001
c) 0.5
d) 0.05
13. What is the self inductance of a coil which produces, self induced emf of 5 V , when the current changes from 3 A to 2 A in one millisecond?
a) 5 H
b) 5 mH
c) 5000 H
d) 50 H
14. A circular coil of diameter 21 cm is placed in a magnetic field of induction $10^{-4} T$. The magnitude of flux linked with coil when the plane of coil makes an angle 30° with the field is
a) $1.44 \times 10^{-6} \mathrm{~Wb}$
b) $1.732 \times 10^{-6} \mathrm{~Wb}$
c) $3.1 \times 10^{-6} \mathrm{~Wb}$
d) $4.2 \times 10^{-6} \mathrm{~Wb}$

2006
15. The north pole of a long horizontal bar magnet is being brought closer to a vertical conducting plane along the perpendicular direction. The direction of the induced current in the conducting plane will be
a) Horizontal
b) Vertical
C) Clockwise
D) Anticlockwise
16. Induced emf in the coil depends upon
a) Conductivity of coil
b) Amount of flux
c) Rate of change of linked flux
d) Resistance of coil
17. If electric flux varies according to $\phi=3 t^{2}+4 t+2$, find emf at $\mathbf{t}=\mathbf{2 s}$
a) 22 V
b) 18 V
c) 20 V
d) 16 V
18. A bar magnet is dropped between a current carrying coil. What would be its acceleration?
a) g downwards
b) Greater than g downwards
c) Less than g downwards
d) Bar will be stationary
19. In a closed 10Ω circuit the change of flux ϕ with respect to time t is given by the equation $\phi=2 t^{2}-5 t-1$, the current at $\mathbf{t}=0.25 \mathrm{~s}$ will be
a) 4 A
b) 0.04 A
c) 0.4 A
d) 1 A
20. Two circular, similar, coaxial loops carry equal currents in the same direction. If the loops are brought nearer, what will happen?
a) Current will increase in each loop
b) Current will decrease in each loop
c) Current will remain same in each loop
d) Current will increase in one and decrease in the other
21. A coil having 500 turns of square shape each of side $\mathbf{1 0} \mathbf{~ c m}$ is placed normal to a magnetic field which is increasing at $1 T s^{-1}$. The induced emf is
a) 0.1 V
b) 0.5 V
c) 1 V
d) 5 V
22. In a solenoid, the number of turns is doubled, then self - inductance will become
a) Half
b) Double
c) $\frac{1}{4}$ times
d) Quadruple
23. The Lenz's law gives
a) Direction of induced current
b) Magnitude of induced emf
c) Magnitude of induced current
d) Magnitude and direction of induced current
24. A copper rod of length l is rotated about one end, perpendicular to the uniform magnetic field B with constant angular velocity ω. The induced emf between two ends of the rod is
a) $\frac{1}{2} B \omega l^{2}$
b) $B \omega l^{2}$
c) $\frac{3}{2} B \omega l^{2}$
d) $2 B \omega l^{2}$
25. The flux associated with coil changes from 1.35 Weber to 0.79 Weber within $\frac{1}{10} s$. Then the charge produced by the earth coil. If resistance of coil is 7Ω is
a) 0.08 C
b) 0.8 C
c) 0.008 C
d) 8 C
26. An aeroplane having a wing space of 35 m flies due north with the speed of $90 \mathrm{~ms}^{-1}$ given $B=4 \times 10^{-5} \mathrm{~T}$. The potential difference between the tips of the wings will be
a) 0.013 V
b) 1.26 V
c) 12.6 V
d) 0.126 V
27. A straight conductor of length $\mathbf{4 m}$ moves at a speed of $10 \mathrm{~ms}^{-1}$. When the conductor makes an angle of 30° with the direction of magnetic field of induction of $0.1 \mathrm{~Wb} / \mathrm{m}^{2}$ then induced emf is
a) 8 V
b) 4 V
c) 1 V
d) 2 V

2004
28. If the current through a solenoid increases at a constant rate, then the induced current
a) Increases with time and is opposite to the direction of the inducing current
b) Is a constant and is opposite to the direction of the inducing current
c) Increases with time and is in the direction of the inducing current
d) Is a constant and is in the direction of the inducing current
29. Which law follows the lawnofe.
a) Lenz's law
b) Kirchoff's law
c) Maxwell's law
d) Ampere's law
30. A small piece of metal wire is dragged across the gap between the poles of a magnet is 0.4 s . If the change in magnetic flux in the wire is $8 \times 10^{-4} \mathrm{~Wb}$, then emf induced in the wire is
a) $8 \times 10^{-3} \mathrm{~V}$
b) $6 \times 10^{-3} \mathrm{~V}$
c) $4 \times 10^{-3} \mathrm{~V}$
d) $2 \times 10^{-3} \mathrm{~V}$

Faraday's and Lenz's law

Key

1) \mathbf{a}
2) \mathbf{c}
3) \mathbf{a}
4) d
5) d
6) b
7) \mathbf{a}
8) e
9) d
10) b
11) \mathbf{b}
12) \mathbf{b}
13) b
14) b
15) \mathbf{c}
16) \mathbf{c}
17) \mathbf{d} 18) \mathbf{c}
18) \mathbf{c} 20) \mathbf{b}
19) \mathbf{d}
20) \mathbf{d}
21) a 24) a
22) a
23) d
24) d 28) b
25) a 30) a

Solutions

1. $\phi=B A \cos \theta$

$$
\theta=60^{\circ}, B=\frac{1}{\pi} W v m^{-2}, A=\pi(0.2)^{2}
$$

$\therefore \phi=\frac{1}{\pi} \times \pi(0.2)^{2} \times \cos 60^{\circ}$
$(0.2) \times \frac{1}{2}=0.02 \mathrm{~Wb}$
4. Induced emf $e-L \frac{d i}{d t}=-L \frac{(-2-2)}{0.05}$
$8=L \frac{(4)}{0.05}$
$\therefore L=\frac{8 \times 0.05}{4}=0.1 \mathrm{H}$
5. The produced voltage by an AC generator is 2 V at

$$
t=\frac{1}{100 \pi} s
$$

and maximum produced voltage $\left(e_{o}\right)=100 \mathrm{~V}$

But, $\quad e=e_{o} \sin \omega t$
$e=2 V, t=\frac{1}{100 \pi} s$

$$
e_{o}=100 \mathrm{~V}
$$

$\therefore 2=100 \sin \omega \times \frac{1}{100 \pi}$

But the time $\frac{1}{100 \pi} s$ is very small, so the angle ωt is also very small. Therefore, for a small angle
$\sin \theta=\theta$
$\therefore 2=100 \times \omega \times \frac{1}{100 \pi}$
$\Rightarrow 2 \pi=\omega$
or $2 \pi=2 \pi n$ ($\mathrm{n}=$ frequency of the generator) or $\mathrm{n}=1 \mathrm{~Hz}$
7. $\phi=L i$
or $e-\frac{d \phi}{d t}=-\frac{d}{d t}(L i)$
or $\quad e=-L \frac{d i}{d t}$

Induced current $=\frac{V}{R}=\frac{10}{5}=2 \mathrm{~A}$

Circuit switches off in 1 millisecond
or $d t=1 \times 10^{-3} s$
and $\mathrm{L}=10 \mathrm{H}$
\therefore Induced emf in inductor is $|e|=10 \times \frac{2}{1 \times 10^{-3}}=2 \times 10^{4} \mathrm{~V}$
8. $e=B l v$
$l=50 \mathrm{~cm}=0.5 \mathrm{~m}$
$v=300 \mathrm{~m} \mathrm{~min}^{-1}$
$=\frac{300}{60}=5 \mathrm{~ms}^{-1}$
and

$$
\mathrm{e}=2 \mathrm{~V}
$$

Magnetic field $B=\frac{e}{l v}=\frac{2}{0.5 \times 5}=0.8 T$
9. $e=-N \frac{d \phi}{d t}$
$e=-N \frac{d(B A)}{d t}$

Time interval dt, depends on the speed with which the magnet is moved.

Therefore, the induced emf is independent of the resistance of the coil.
10. $e=\frac{\Delta \phi}{\Delta t}$
and $i=\frac{e}{R}=\frac{\Delta \phi}{R \Delta t}$

Charge passes through the circuit $Q=i \times \Delta t$
$\Rightarrow Q=\frac{\Delta \phi}{R \Delta t} \times \Delta t \Rightarrow Q=\frac{\Delta \phi}{R}$
11. $\phi=L i$

Where L is proportionality constant known as self inductance.
$\therefore L=\frac{\phi}{i}=0$

Again since $\mathrm{I}=0$, hence, $R=\infty$
12. When current in a coil is changing, due to opposition by the coil through its self inductance L , work done in time dt is

$$
d W=P d t=e I d t=L I d t \quad\left(\text { as } e=L \frac{d I}{d t}\right)
$$

So, work done in establishing a current I in the coil is

$$
W=\int_{o}^{I} L I d I=\frac{1}{2} L I^{2}
$$

This work is stored as magnetic potential energy U
Here $\quad I=2 \mathrm{~A}, \mathrm{~L}=0.5 \mathrm{mH}$

$$
\therefore U=\frac{1}{2} \times 0.5 \times 10^{-3} \times(2)^{2}=0.001 \mathrm{~J}
$$

13. $\mathrm{e}=5 \mathrm{~V}, \mathrm{dI}=2-3=-1 \mathrm{~A}$
$d t=1 \mathrm{~ms}=1 \times 10^{-3} s$

As $e=-L \frac{d I}{d t}$
$\therefore L=-e \frac{d t}{d t}=\frac{5 \times 1 \times 10^{-3}}{1}$

$$
5 \times 10^{-3} H=5 m H
$$

16. $e=-\frac{d \phi_{B}}{d t}$
17. $\phi=3 t^{2}+4 t+2 \Rightarrow e m f=\frac{d \phi}{d t}=6 t+4$

$$
\therefore\left|\frac{d \phi}{d t}\right|_{t=2}=16 \mathrm{~V}
$$

19. $\phi=2 t^{2}-5 t+1$

Induced emf $e=-\frac{d \phi}{d t}$
$=-\frac{d}{d t}\left(2 t^{2}-5 t+1\right)=-(4 t-5)$
\therefore Current $i=\frac{e}{R}=-\frac{(4 t-5)}{10}$

At $\mathrm{t}=0.25 \mathrm{~s} \quad i=-\frac{(4 \times 0.25-5)}{10}=-\frac{(-4)}{10}=0.4 \mathrm{~A}$
21. $\phi=B A \cos \theta$
$\theta=0^{\circ}, B=1 T s^{-1}$
$A=(10)^{2} \mathrm{~cm}^{2}=10^{-2} \mathrm{~m}^{2}$
$\therefore \theta=1 \times 10^{-2}$
$e=-N \frac{\Delta \phi}{\Delta r}=-500 \times 10^{-2}=-5 \mathrm{~V}$
22. For a solenoid of length l, area of cross - section A, having B closed wound turns,

$$
L=\frac{\mu_{o} N^{2} A}{l}
$$

When $N^{\prime}=2 N$

$$
L^{\prime}=\frac{\mu_{o}(2 N)^{2} A}{l}=\frac{4 \mu_{o} N^{2} A}{l}=4 L
$$

Hence, when number of turns is doubled then self inductance becomes quadruple.
$e=B \times($ rate of change of area of loop $)$
If θ is the angle between the rod and the radius of circle at P at time t , area of the arc formed by the rod and radius at $P=\frac{1}{2} l^{2} \theta$
where l is radius of the circle

$$
\begin{aligned}
& e=B \times \frac{d}{d t}\left(\frac{1}{2} l^{2} \theta\right) \\
& =\frac{1}{2} B \cdot l^{2} \frac{d \theta}{d t} \\
& =\frac{1}{2} B l^{2} \omega \quad\left(\because \omega=\frac{d \theta}{d t}\right)
\end{aligned}
$$

25. As $I=\frac{e}{R}=\frac{d \phi}{R d t}$
or $\quad I d t=\frac{d \phi}{R}$
Integrating $\int I d t=\int \frac{d \phi}{R}$
or $\quad q=\frac{\phi}{R}$
If coil contains N turns, then $q=\frac{N \phi}{R}$
If there is flux change $\Delta \phi$, then $q=\frac{N \Delta \phi}{R}$

$$
\begin{aligned}
& =\frac{1}{7} \times(1.35-0.79) \\
& =0.08 \mathrm{~V}
\end{aligned}
$$

26. The induced emf is given by

$$
\begin{aligned}
& =B v l=4 \times 10^{-5} \times 90 \times 35 \\
& =0.126 \mathrm{~V}
\end{aligned}
$$

27. Induced emf is given by

$$
\begin{aligned}
& e=B v l \sin \theta=0.1 \times 10 \times 4 \sin 30^{\circ} \\
& \mathrm{e}=2 \mathrm{~V}
\end{aligned}
$$

30. $e=-\frac{d \phi}{d t}$

$$
\begin{aligned}
& d \phi-8 \times 10^{-4} \mathrm{~Wb}, d t=0.4 \mathrm{~s} \\
& \Rightarrow \quad e=-\frac{8 \times 10^{-4}}{0.4}=-2 \times 10^{-3} \mathrm{~V}
\end{aligned}
$$

Self and Mutual Inductions

2011

1. What is the self inductance of solenoid of length 31.4 cm , area of cross - section $10^{-3} \mathrm{~m}^{2}$ and total number of turns 10^{3} ?
a) 4 mH
b) 4 H
c) 40 H
d) 0.4 H
2. What should be the value of self inductance of an inductor that should be connected to $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply so that a maximum current of 0.9 A flows through it?
a) 11 H
b) 2 H
c) 1.1 H
d) 5 H
3. In Hertz's experiment, the rods connected with an induction coil behave as
a) An Inductor
b) Capacitor
c) Resistor
d) An Induction Coil
4. A transformer has $\mathbf{5 0 0}$ primary turns and $\mathbf{1 0}$ secondary turns. If the secondary has a resistive load of 15Ω, the currents in the primary and secondary respectively, are
a) $0.16 \mathrm{~A}, 3.2 \times 10^{-3} \mathrm{~A}$
b) $3.2 \times 10^{-3} \mathrm{~A}, 0.16 \mathrm{~A}$
c) $0.16 \mathrm{~A}, 0.16 \mathrm{~A}$
d) $3.2 \times 10^{-3} \mathrm{~A}, 3.2 \times 10^{-3} \mathrm{~A}$
5. Two coils are placed close to each other. The mutual inductance of the pair of coils depends upon
a) The rates at which currents are changing in the two coils
b) Relative position and orientation of the two coils
c) The material of the wires of the coils
d) The currents in the two coils
6. X and T, two metallic coils are arranged in such a way that, when steady change in current flowing in X coil is 4 A , change in magnetic flux associated with coil Y is 0.4 Wb . Mutual inductance of the system of these coils is
a) 0.2 h
b) 5 H
c) 0.8 H
d) 0.1 H
7. According to phenomenon of mutual inductance
a) The mutual inductance does not depend on the geometry of the two coils involved
b) The mutual inductance depends on the intrinsic magnetic property, like relative permeability of the material
c) The mutual inductance is independent of the magnetic property of the material
d) Ratio of magnetic flux produced by the coil 1 at the place of the coil 2 and the current in the coil 2 will be different from that of the ratio defined by interchanging the coils

2007
8. Two coils of self - inductances 2 mH and 8 mH are placed so close together that the effective flux in one coil is completely linked with the other. The mutual inductance between these coils is
a) 10 mH
b) 6 mH
c) 4 mH
d) 16 mH

2006
9. A current of $I=10 \sin (100 \pi t) A$ is passed in first coil, which induce a maximum emf $5 \pi V$ in second coil. The mutual inductance between the coils is
a) 10 mH
b) 15 mH
c) 25 mH
d) 20 mH
e) 5 mH

2005
10. The induction coil works on the principle of
a) Self Induction
b) Mutual Induction
c) Ampere's Rule
d) Fleming's Right Hand Rule
11. Two coils have mutual inductance 0.005 H . The current changes in the first coil according to equation $I=I_{o} \sin \omega t$ where $I_{o}=10 \mathrm{~A}$ and $\omega=100 \pi \mathrm{rad} \mathrm{s}{ }^{-1}$. The maximum value of emf in the second coil is
a) 12π
b) 8π
c) 5π
d) 2π
12. Two inductors each of inductance L are joined in parallel. Their equivalent inductance will be
a) Zero
b) $\frac{L}{2}$
c) L
d) 2 L
13. For a solenoid having a primary coil of N_{1} turns and a secondary coil of N_{2} turns the coefficient of mutual inductance is
a) $\mu_{o} \mu_{r} \frac{N_{1} N_{2}}{l}$
b) $\frac{\mu_{0} \mu_{r} N_{1} N_{2}}{A l}$
c) $\mu_{o} \mu_{r} N_{1} N_{2} A l$
d) $\frac{\mu_{o} \mu_{r} N_{1} N_{2} A}{l}$

www.sakshieducation.com

Self and Mutual Inductions

Key

1) b
2) d
3) a
4) b
5) b
6) d
7) b
8) c
9) e
10) b
11) c
12) b
13) d

Solutions

1. $A=10^{-3} \mathrm{~m}^{2}$
$l=31.4 \mathrm{~cm}=31.4 \times 10^{-2} \mathrm{~m}$ and $n=10^{3}$
$\phi=L o$
$\mathrm{BA}=\mathrm{Li}$
$\mu_{o} n i A=L i$
$L=\frac{4 \pi \times 10^{-7} \times 10^{3} \times 10^{-3}}{31.4 \times 10^{-2}}=4 \mathrm{mH}$
2. $|e|=\frac{L d i}{d t}=220=L \times \frac{0.9}{1 / 50}$
3. $\frac{N_{s}}{N_{p}}=\frac{i_{p}}{i_{s}}$ Or $\frac{10}{500}=\frac{i_{p}}{i_{s}}$
$\Rightarrow \frac{i_{p}}{i_{s}}=\frac{1}{50} \Rightarrow \quad i_{s}=50 i_{p}$

This condition is satisfied only when current in primary $3.2 \times 10^{-3} \mathrm{~A}$ and in secondary 0.16 A .
6. $\quad \phi_{Y} \propto I_{X}$
$\phi_{Y}=$ change in magnetic flux in coil Y,
www.sakshieducation.com
$I_{X}=$ change in current in coil X,
$\mathrm{M}=$ mutual inductance,

$$
\begin{equation*}
\Rightarrow \phi_{Y}=M I_{X} \tag{i}
\end{equation*}
$$

Given , $\quad I_{X}=4 \mathrm{~A}$

$$
\begin{aligned}
& \phi_{Y}=0.4 W b \\
& \text { Or } \quad 0.4=M \times 4 \\
\Rightarrow & M=\frac{0.4}{4}=0.1 H
\end{aligned}
$$

8. $\quad M_{12}=\frac{N_{2} \phi_{B_{2}}}{i_{1}}$ and $M_{21}=\frac{N_{1} \phi_{B_{1}}}{i_{2}}$
$L_{1}=\frac{N_{1} \phi_{B_{1}}}{i_{1}}$ and $L_{2}=\frac{N_{2} \phi_{B_{2}}}{i_{2}}$

$$
\phi_{B_{2}}=\phi_{B_{1}}
$$

Since $M_{12}=M_{21}=M$,

$$
\begin{aligned}
& M_{12} M_{21}=M^{2}=\frac{N_{1} N_{2} \phi_{B_{1}} \phi_{B_{2}}}{i_{1} i_{2}}=L_{1} L_{2} \\
& \therefore \quad M_{\max }=\sqrt{L_{1} L_{2}}
\end{aligned}
$$

But, $L_{1}=2 m H, L_{2}=8 m H$

$$
\therefore M_{\max }=\sqrt{2 \times 8}=\sqrt{16}=4 m H
$$

9. $e=-\frac{M d i}{d t} \Rightarrow M=-\frac{e}{d i / d t}$
$e=5 \pi V$ and $i=10 \sin (100 \pi t)$,
$\therefore\left(\frac{d i}{d t}\right)_{\max }=10 \times 100 \pi$
$\therefore \quad M=-\frac{5 \pi}{10 \times 100 \pi}=-5 \times 10^{-3} H=5 \mathrm{mH}$
10. $\mathrm{M}=0.005 \mathrm{H}$ and $I_{o}=10 \mathrm{~A}$
$\omega=100 \pi \mathrm{rad} \mathrm{s}{ }^{-1}$
$I=I_{o} \sin \omega t$
or $\quad \frac{d I}{d t}=\frac{d}{d t}\left(I_{o} \sin \omega t\right)=I_{o} \cos \omega t . \omega=10 \times 1 \times 100 \pi=1000 \pi$
$\therefore e=M \times \frac{d i}{d t}=0.05 \times 1000 \times \pi=5 \pi V$
11. $L_{1}=L$ and $L_{2}=L$
$\frac{1}{L_{\text {eq }}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}=\frac{1}{L}+\frac{1}{L}=\frac{2}{L}$
$\therefore L_{e q}=\frac{L}{2}$
12. $M=\frac{\phi}{I_{P}}=\frac{\mu_{0} \mu_{r} N_{1} N_{2} A I_{P}}{l I_{P}}=\frac{\mu_{0} \mu_{r} N_{1} N_{2} A}{l}$

ApplicationwWESAkSHieduCation.GOTransformer)

1. Two solenoids of equal number of turns have their lengths and the radii in the same ratio 1: 2 . The ratio of their self - inductance will be
a) $1: 2$
b) $2: 1$
c) $1: 1$
d) $1: 4$
e) $1: 3$
2. Assertion (A): An electric motor will have maximum efficiency when back emf becomes equal to half of applied emf.
Reason (R): Efficiency of electric motor depends only on magnitude of back emf.
a) Both assertion and reason are true and reason is the correct explanation of assertion.
b) Both assertion and reason are true but reason is not the correct explanation of assertion.
c) Assertion is true but reason is false.
d) Both assertion and reason are false.
3. A transformer is used to light a 100 W and 110 V lamp from a 220 V main. If the main current is 0.5 A , the efficiency of the transformer is approximately
a) 30%
b) 50%
c) 90%
d) 10%
4. An electric motor runs on $D C$ source of emf 200 V and draws a current of 10 A . If the efficiency be $\mathbf{4 0 \%}$, then the resistance of armature is
a) 2Ω
b) 8Ω
c) 12Ω
d) 16Ω
5. Which quantity is increased in step - down transformer?
a) Current
b) Voltage
c) Power
d) Frequency
6. In a step - up transformer, the turn ratio is $1: 2$. A Leclanche cell $(\mathbf{e m f}=1.5 \mathrm{~V})$ is connected across the primary. The voltage developed in the secondary would be
a) 3.0 V
b) 0.75 V
c) 1.5 V
d) Zero
7. The emf induced in a secondary coil is 20000 V , when the current breaks in the primary coil. The mutual inductance is $\mathbf{5 H}$ and the current reaches to zero in $10^{-4} \mathrm{~s}$ in the primary. The maximum current in the primary before it breaks is
a) 0.1 A
b) 0.4 A
c) 0.6 A
d) 0.8 A
8. Two coils are wound on the same iron rod so that the flux generated by one passes through the other. The primary coil has N_{P} turns in it and when a current 2 A flows through it the flux in it is $2.5 \times 10^{-4} \mathrm{~Wb}$. If the secondary coil has $\mathbf{1 2}$ turns the mutual inductance of the coils is (assume the secondary coil is in open circuit)
a) $10 \times 10^{-4} \mathrm{H}$
b) $15 \times 10^{-4} \mathrm{H}$
c) $20 \times 10^{-4} \mathrm{H}$
d) $25 \times 10^{-4} \mathrm{H}$
9. A current of 5 A is flowing at 220 V in the primary coil of a transformer. If the voltage produced in the secondary coil is 2200 V and 50% of power is lost, then the current in secondary will be
a) 2.5 A
b) 5 A
c) 0.25 A
d) 0.5 A
10. An electric generator is based on
a) Faraday's law of electromagnetic induction
b) Motion of charged particles in electromagnetic field
c) Newton's laws of motion
d) Fission of uranium by slow neutrons
11. The primary and secondary coils of a transformer have 50 and 1500 turns respectively. If the magnetic flux ϕ linked with the primary coil is given by $\phi=\phi_{o}+4 t$, where ϕ is in weber, \mathbf{t} is time in second and ϕ_{o} is constant, the output voltage across the secondary coil is
a) 90 V
b) 120 V
c) 220 V
d) 30 V
12. The core of a transformer is laminated because
a) Energy losses due to eddy currents may be minimised
b) The weight of the transformer may be reduced
c) Rusting of the core may be prevented
d) Ratio of voltage in primary and secondary may be increased
13. In step - up transformer, relation between number of turns in primary $\left(N_{p}\right)$ and number of turns in secondary $\left(N_{s}\right)$ coils is
a) N_{s} is greater than N_{p}
b) N_{p} is greater than N_{s}
c) N_{s} is equal to N_{p}
d) $N_{p}=2 N_{s}$
14. Use of eddy currents is done in the following except
a) Moving Coil Galvanometer
b) Electric Brakes
c) Induction Motor
d) Dynamo
15. A six pole generator with fixed field excitation develops an emf of 100 V , when operating at 1500 rpm . At what speed must it rotate to develop 120 V ?
a) 1200 rpm
b) 1800 rpm
c) 1500 rpm
d) 400 rpm
16. A step - down transformer reduces the voltage of a transmission line from 2200 V to 220 V . The power delivered by it is 880 W and its efficiency is 88%. The input current is
a) 4.65 mA
b) 0.045 A
c) 0.45 A
d) 4.65 A
17. Fleming's left and right hand rule are used in
a) DC motor and AC generator
b) DC generator and AC motor
c) DC motor and DC generator
d) Both rules are same, anyone can be used
18. Voltage in the secondary coil of a transformer does not depend upon
a) Frequency of the source
b) Voltage in the Primary Coil
c) Ratio of number of turns in the two coils
d) Both (b) and (c)
19. When power is drawn from the secondary coil of the transformer, the dynamic resistance
a) Increases
b) Decreases
c) Remains unchanged
d) Changes erratically

2006
20. Core of transformer is made up
a) Soft Iron
b) Steel
c) Iron
d) Alnico
21. Transformer is based upon the principle of
a) Self Induction
b) Mutual Induction
c) Eddy Current
d) None of these
22. A transformer has an efficiency of 80%. It works at 4 kW and 100 V . If secondary voltage is 240 V , the current in primary coil is
a) 10 A
b) 4 A
c) 0.4 A
d) 40 A
23. In a step - up transformer, the number of turns in
a) Primary are less
b) Primary are more
c) Primary and secondary are equal
d) Primary are infinite
24. A step up transformer operates on a 230 V line and supplies to a load of 2 A . The ratio of primary and secondary windings is $1: 35$. Determine the primary current
a) 8.8 A
b) 12.5 A
c) 25 A
d) 50 A
25. The turn ratio of a transformer is given as $2: 3$. If the current through the primary coil is 3 A , thus calculate the current through load resistance
a) 1 A
b) 4.5 A
c) 2 A
d) 1.5 A
26. A transformer with efficiency 80% works at a 4 kW and 100 V . If the secondary voltage is 200 V then the primary and secondary currents are respectively
a) $40 \mathrm{~A}, 16 \mathrm{~A}$
b) $16 \mathrm{~A}, 40 \mathrm{~A}$
c) $20 \mathrm{~A}, 40 \mathrm{~A}$
d) $40 \mathrm{~A}, 20 \mathrm{~A}$
5) $40 \mathrm{~A}, 10 \mathrm{~A}$
27. In the induction coil, across secondary coil the output voltage is practically
a) Unidirectional, High, Intermittent
b) Unidirectional, Low, Intermittent
c) Unidirectional, High, Constant
d) Unidirectional, Low, Constant
28. The number of turns in primary and secondary of a transformer are 5 and 10 and mutual inductance of a transformer is $\mathbf{2 5 H}$. Now, the number of turns in primary and secondary are 10 and 5 , the new mutual inductance will be
a) 6.25 H
b) 12.5 H
c) 25 H
d) 50 H
29. If a transformer of an audio amplifier has output impedance 8000Ω and the speaker has input impedance of 8Ω, the primary and secondary turns of this transformer connected between the output of amplifier and to loud speaker should have the ratio
a) $1000: 1$
b) $100: 1$
c) $1: 32$
d) $32: 1$
30. The coefficient of mutual inductance between the primary and secondary of the coil is $\mathbf{5 H}$. A current of $\mathbf{1 0 A}$ is cut $\mathbf{-}$ off in 0.5 s . The induced emf is
a) 1 V
b) 10 V
c) 5 V
c) 100 V
31. Quantity that remains unchanged in a transformer is
a) Voltage
b) Current
C) Frequency
d) None of these

2004
32. Eddy currents are produced in
a) Induction Furnace
b) Electromagnetic Brakes
c) Speedometers
d) All of these
33. Which of the following ispothragablateducation.com
a) Loudspeaker
b) Amplifier
c) Microphone
d) All of these
34. A step - up transformer has transformation ratio 3: 2. The voltage in the secondary coil, if the voltage in the primary is 30 V , will be
a) 300 V
b) 90 V
c) 45 V
d) 23 V
35. A transformer is having 2100 turns in primary and 4200 turns in secondary. An AC source of $120 \mathrm{~V}, 10 \mathrm{~A}$ is connected to its primary. The secondary voltage and current are
a) $240 \mathrm{~A}, 5 \mathrm{~A}$
b) $120 \mathrm{~V}, 10 \mathrm{~A}$
c) $240 \mathrm{~V}, 10 \mathrm{~A}$
d) $120 \mathrm{~V}, 20 \mathrm{~A}$

Applications of EMI (Motor, Dynamo, Transformer)

Key

1) a
2) c
3) c
4) c
5) a
6) d
7) b 8) b
8) c 10) a
9) b
10) a
11) a
12) d
13) b
14) c 17) c
15) a
16) a
17) a
18) b
19) d
20) a
21) d
22) c
23) a
24) a
25) c
26) a
27) d
28) c
29) d
30) b
31) c 35) a

Solutions

1. $L=\frac{\mu_{0} N_{2} \pi r^{2}}{\lambda}$

$$
\begin{aligned}
& \therefore \frac{L_{1}}{L_{2}}=\left(\frac{r_{1}}{r_{2}}\right)^{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)=\left(\frac{1}{2}\right)^{2} \times\left(\frac{2}{1}\right) \\
& \frac{L_{1}}{L_{2}}=\frac{1}{2}
\end{aligned}
$$

3. $\eta=\frac{\text { Output power }}{\text { Input power }}$
or $\quad \eta=\frac{V_{s} I_{s}}{V_{p} I_{p}}$

But, $V_{s} I_{s}=100 \mathrm{~W}, V_{p}=220 \mathrm{~V}, I_{p}=0.5 \mathrm{~A}$
$\therefore \eta=\frac{100}{220 \times 0.5}=0.90=90 \%$
4. Input power $=V I=200 \times 10=2000 \mathrm{~W}$

Output power $=\frac{40}{100} \times 2000$

$$
=800 \mathrm{~W}
$$

Power loss in heating the armature $=2000-800=1200 \mathrm{~W}$
$\therefore \quad I^{2} R=1200$
or $\quad R=\frac{1200}{I^{2}}=\frac{1200}{10 \times 10}$
or $\quad R=12 \Omega$
7. $e=\frac{M i_{\text {max }}}{t}$
or $20000=5 \times \frac{i_{\text {max }}}{10^{-4}}$
or $\quad i_{\max }=\frac{20000 \times 10^{-4}}{5}=0.4 \mathrm{~A}$
8. $M=\frac{N_{s} \phi}{i}=\frac{12 \times 2.5 \times 10^{-4}}{2}=15 \times 10^{-4} \mathrm{H}$
9. $V_{p}=220 \mathrm{~V}, V_{s}=2200 \mathrm{~V}, I_{p}=5 \mathrm{~A}$ and

Power loss $=50 \%$
$\eta \%=\frac{P_{\text {out }}}{P_{\text {in }}} \times 100=\frac{V_{s} I_{s}}{V_{p} I_{p}} \times 100$
$50=\frac{2200 \times I_{s}}{220 \times 5} \times 100$
$I_{s}=0.25 \mathrm{~A}$
11. The magnetic flux linked with the primary coil is given by
$\phi=\phi_{o}+4 t$

So, voltage across primary
$V_{p}=\frac{d \phi}{d t}=\frac{d}{d t}\left(\phi_{o}+4 t\right)=4 \mathrm{~V} \quad\left(\right.$ as $\phi_{o}=$ constant $)$

Also, we have
$N_{p}=50$ and $N_{s}=1500$

From relation,
$\frac{V_{s}}{V_{p}}=\frac{N_{s}}{N_{p}}$
or

$$
V_{s}=V_{p} \frac{N_{s}}{N_{p}}=4\left(\frac{1500}{50}\right)=120 \mathrm{~V}
$$

15. Speed $=\frac{120}{100} \times 1500 \mathrm{rpm}=1800 \mathrm{rpm}$
16. $\eta=\frac{\text { Output power }}{\text { Input power }}$

$$
\Rightarrow \quad \frac{88}{100}=\frac{880}{P_{i}}
$$

$\Rightarrow P_{i}=1000 \mathrm{~W}$
$I_{p}=\frac{P_{i}}{V_{i}}=\frac{1000}{2200}=0.45 \mathrm{~A}$
22. $P_{i}=V_{p} I_{p}$
or $I_{p}=\frac{P_{i}}{V_{p}}=\frac{4000}{100}=40 \mathrm{~A}$
24. $\frac{I_{P}}{I_{S}}=\frac{N_{S}}{N_{P}}$
or $\quad I_{P}=I_{S} \times \frac{N_{S}}{N_{P}}=2 \times 25=50 \mathrm{~A}$
25. $V_{s} \times i_{s}=V_{p} \times i_{p}$
$\Rightarrow \quad \frac{i_{p}}{i_{s}}=\frac{V_{s}}{V_{p}}=\frac{N_{s}}{N_{p}}=$ transformer ratio

But, $\frac{N_{p}}{N_{s}}=\frac{2}{3}, i_{p}=3 \mathrm{~A}$
$\Rightarrow \quad i_{s}=\frac{N_{s}}{N_{s}} i_{p}=\frac{2}{3} \times 3=2 \mathrm{~A}$
26. $\eta=\frac{\text { Output power }}{\text { Input power }}$
or $\eta=\frac{V_{s} I_{s}}{V_{p} I_{p}}$
$\therefore \frac{80}{100}=\frac{200 \times I_{s}}{4000}$
or $I=16 A$

Also $\quad V_{p} I_{p}=4000$ or $I_{p}=\frac{4000}{100}=40 \mathrm{~A}$
28. $M \propto N_{1} N_{2}$
$\therefore \frac{M_{1}}{M_{2}}=\frac{N_{1} N_{2}}{N^{\prime}{ }_{1} N^{\prime}{ }_{2}}$

$$
\frac{25}{M_{2}}=\frac{5 \times 10}{10 \times 5}
$$

Or $\quad M_{2}=25 H$
29. $e_{p}=-N_{o} \frac{\Delta \phi}{\Delta t}$

$$
e_{s}=-N_{s} \frac{\Delta \phi}{\Delta t}
$$

Also $\quad \mathrm{e}=\mathrm{i} \mathrm{R}$

$$
\therefore \quad \frac{R_{p}}{R_{s}}=\frac{N_{p}}{N_{s}}
$$

$$
R_{s}=8000 \Omega, R_{p}=8 \Omega
$$

$$
\therefore \quad \frac{N_{s}}{N_{p}}=\frac{R_{s}}{R_{p}}=\frac{8000}{8}=\frac{1000}{l}
$$

30. $e=-M \frac{d i}{d t}$
$\mathrm{M}=5 \mathrm{H}, \mathrm{di}=10 \mathrm{~A}, \mathrm{dt}=0.5 \mathrm{~s}$
$\therefore \quad e=-5 \times \frac{10}{0.5}=-100 \mathrm{~V}$
31. $\frac{E_{s}}{E_{p}}=\frac{N_{s}}{N_{p}}$

$$
\text { or } E_{s}=E_{p} \frac{N_{s}}{N_{p}}=30 \times \frac{3}{2}=45 \mathrm{~V}
$$

35. $V_{s} \times i_{s}=V_{p} \times i_{p}$

$$
\frac{i_{p}}{i_{s}}=\frac{V_{s}}{V_{p}}=\frac{N_{s}}{N_{p}}=r
$$

$$
\therefore \quad V_{s}=\frac{N_{s}}{N_{p}} \times V_{p}
$$

$V_{p}=120 \mathrm{~V}, N_{s}=4200, N_{p}=2100$
$\therefore \quad V_{s}=\frac{4200}{2100} \times 120$

$$
V_{s}=240 \mathrm{~V}
$$

and $\frac{I_{s}}{I_{p}}=\frac{N_{p}}{N_{s}}$
$\Rightarrow I_{s}=\frac{N_{p}}{N_{s}} \times I_{p}=\frac{2100}{4200} \times 10=5 \mathrm{~A}$

