Alternating Current

Voltage and Power

2011

1. In an AC circuit, V and I are given by $V = 150\sin(150t)$ volt, and $I = 150\sin(150t + \frac{\pi}{3})$ amp. The power dissipated in the circuit is

- a) 106 W
- b) 150 W
- c) 5625 W
- d) Zero

2010

2. An AC ammeter is used to measure current in a circuit. When a given direct current passes through the circuit, the AC ammeter reads 3A. When another alternating current passes through the circuit, the AC ammeter reads 4A. Then the reading of this ammeter, if DC and AC flow through the circuit simultaneously, is

a) 3 A

- b) 4 A
- c) 7 A

d) 5 A

3. An AC source is 120V – 60Hz. The value of voltage after $\frac{1}{720}s$ from start will be

- a) 20.2 V
- b) 42.4 V
- c) 84.8 V
- d) 106.8 V

2009

4. The oscillating electric and magnetic vectors of an electromagnetic wave are oriented along

- a) The same direction but has a phase difference of 90°
- b) The same direction and are in same phase
- c) Mutually perpendicular directions and are in same phase
- d) Mutually perpendicular directions but has a phase difference of 90°

5. Alternating current is transmitted to take places

- a) At high voltage and low current
- b) At high voltage and high current
- c) At low voltage and low current
- d) At low voltage and high current

6.	In	an	AC	circuit	the	emf	(e)	and	the	current	(i)	at	any	instant	are	given
	res	pec	tively	by												

$$e = E_o \sin \omega t$$
$$i = I_o \sin(\omega t - \phi)$$

The average power in the circuit over one cycle of AC is

a)
$$\frac{E_o I_o}{2}$$

b)
$$\frac{E_o I_o}{2} \sin \phi$$

c)
$$\frac{E_o I_o}{2} \cos \phi$$

d) $E_o I_o$

- 7. Alternating current cannot be measured by DC ammeter because
 - a) AC cannot pass through DC ammeter
 - b) AC changes direction
 - c) Average value of current for complete cycle is zero
 - d) DC ammeter will get damaged

2007

8. If the power factor changes from $\frac{1}{2}$ to $\frac{1}{4}$ then what is the increase in impedance in

AC?

a) 20%

b) 50%

c) 25%

- d) 100%
- 9. The instantaneous voltage through a device of impedance 20Ω is $e = 80 \sin 100\pi t$.

The effective value of the current is

a) 3 A

- b) 2.828 A
- c) 1.732 A
- d) 4 A

- e) $\sqrt{2}A$
- 10. For high frequency, capacitor offers
 - a) More resistance
- b) Less resistance
- c) Zero resistance
- d) None of the

above

2006

11. If reading of an ammeter is 10A, the peak value of current is

a)
$$\frac{10}{\sqrt{2}}A$$

b)
$$\frac{5}{\sqrt{2}}A$$

c)
$$20\sqrt{2} A$$

d)
$$10\sqrt{2} \ A$$

If impedance is $\sqrt{3}$ times of resistance, find phase difference

12.

	a) Zero	b) 30°	c) 60°	d) Data is incomplete		
13.	An alternating voltage	$e V = V_o \sin \omega t $ is applie	d across a circuit.	As a result the		
	current $I = I_o \sin(\omega t - \omega t)$	$-\pi/2)$ flows in it. The p	ower consumed in	the circuit per		
	cycle is					
	a) $0.5V_{o}I_{o}W$	b) $0.707 V_o I_o W$	c) $1.919V_o I_o W$	d) Zero		
14.	An AC is represente	d by $e = 220\sin(100\pi)$	t volt and is appli	ed over a resistance		
	of 110Ω . The heat pro	oduced in 7 min is				
	a) $11 \times 10^3 cal$	b) $22 \times 10^3 cal$	c) 33×10 ³ cal	d) $25 \times 10^3 cal$		
15.	If an AC produces sa	ame heat as that prod	uced by a steady	current of 4A, then		
	peak value of current	is				
	a) 4 A	b) 1.56 A	c) 5.6 A	d) 1.41 A		
16.	The potential differen	ice across an instrumer	it in an AC circuit	of frequencies f is V		
	and the current throu	igh it is I such that V :	$= 5\cos 2\pi ft \text{ and } I$	$= 2\sin 2\pi ft$ amp. The		
	power dissipated in the instrument is					
	a) Zero	b) 10 W	c) 5 W	d) 2.5 W		
2005						
17.	An alternating current is given by $I = I_1 \cos \omega t + I_2 \sin \omega t$. The root mean square					
	current is					
	a) $\frac{\left(I_1 + I_2\right)}{\sqrt{2}}$	b) $\frac{(I_1 + I_2)^2}{2}$	c) $\sqrt{\frac{I_1^2 + I_2^2}{2}}$	d) $\frac{\sqrt{I_1^2 - I_2^2}}{2}$		
18.	The peak value of AC	voltage on 220V mains	s is			
	a) $240\sqrt{2}V$	b) $230\sqrt{2}V$	c) $220\sqrt{2}V$	d) $200\sqrt{2}V$		
19.	The time taken by a	n alternating current	of 50Hz in reach	ing from zero to its		
	maximum value will k	oe .				
	a) 0.5 s	b) 0.005 s	c) 0.05 s	d) 5		

Alternating Current

Voltage and Power

Key

Solutions

1.
$$V = 150 \sin (150t) \text{ volt}$$

And $I = 150 \sin (150t + \pi/3) amp$
 $I_0 = 150 amp \text{ and } V_0 = 150 volt$
 $P = \frac{1}{2} V_o I_0 \cos \phi$

$$P = 0.5 \times 150 \times 150 \times \cos 60^{\circ}$$

- 2. Quantity of heat liberated in the ammeter of resistance R
 - i) Due to direct current of 3 A, $Q = \left[(3)^2 R/J \right]$
 - ii) Due to alternating current of 4 A, $Q = \left[\left(4 \right)^2 R / J \right]$

Total heat produced per second =
$$\frac{(3)^2 R}{J} + \frac{(4)^2 R}{J} = \frac{25R}{J}$$

But,
$$\frac{I^2R}{J} = \frac{25R}{J}$$
$$I = 5 A$$

3.
$$V = V_0 \sin \omega t$$
$$V = V_{rms} \sqrt{2} \sin \omega t$$

$$t = \frac{1}{720}s$$

$$V = 120\sqrt{2}\sin 2\pi vt = 120\sqrt{2}\sin 2\pi \times 60 \times \frac{1}{720} = 60\sqrt{2} = 84.8V$$

$$6. P_{av} = \frac{W}{T}$$

$$P_{av} = \frac{\left(E_0 I_0 \cos \phi\right) T / 2}{T}$$

$$P_{av} = \frac{E_0 I_0 \cos \phi}{2}$$

8.
$$\cos\phi \alpha \frac{1}{Z}$$

$$\therefore \frac{Z_1}{Z_2} = \frac{\cos \phi_1}{\cos \phi_2} = \frac{1/4}{1/2} = \frac{1}{2}$$

$$\Rightarrow$$
 $Z_2 = 2Z_1$

Percentage change =
$$\frac{2Z_1 - Z_1}{Z_1} \times 100 = 100\%$$

9.
$$e = 80 \sin 100\pi t$$

Here,
$$e_0 = 80V$$

Where e_0 is the peak value of voltage

Impedance (Z) = 20Ω

$$I_0 = \frac{e_0}{Z} I_0 = \frac{e_0}{Z}$$

$$I_{rms} = \frac{I_0}{\sqrt{2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2} = 2.828 A$$

$$11. \qquad i_{rms} = \frac{i_0}{\sqrt{2}}$$

$$\Rightarrow i_0 = \sqrt{2} \times i_{rms} = \sqrt{2} \times 10 A = 10\sqrt{2} A$$

2011

13.
$$V = V_0 \sin \omega t$$
 and $I = I_0 \sin (\omega t - \pi/2)$

$$\therefore P = \frac{1}{2}V_0I_0\cos\phi$$

But
$$\phi = \pi / 2 = 90^{\circ}$$

$$P = \frac{1}{2}V_0 I_0 \cos 90^0$$

$$=0\left(\cos 90^{0}=0\right)$$

14.
$$H = \frac{I_{v}^{2}RT}{J}cal = \frac{\left(\sqrt{2}\right)^{2} \times 100 \times 7 \times 60}{42} = 22 \times 10^{3} \text{ Cal}$$
$$\left(\because I_{ms} = \frac{I_{0}}{\sqrt{2}} = \frac{220/100}{\sqrt{2}} = \sqrt{2}\right)$$

15.
$$I_0 = \sqrt{2} I_{rms}$$

$$I_{rms} = 4A$$

$$I_0 = \sqrt{2} \times 4 = 5.6 A$$

16.
$$P = VI \cos \phi$$

$$V = 5\cos P = VI\cos 2\pi ft$$

$$V = 5\sin\left(2\pi ft + \frac{\pi}{2}\right)$$
 and $I = 2\sin 2\pi ft$

Here,
$$\phi = \frac{\pi}{2}$$

$$P = VI\cos\phi = VI\cos\frac{\pi}{2} = 0$$

17.
$$I = I_1 \cos \omega t + I_2 \sin \omega t$$

$$I_0 = \sqrt{I_1^2 + I_2^2}$$

$$I_{rms} = \frac{I_0}{\sqrt{2}} = \frac{\sqrt{I_1^2 + I_2^2}}{\sqrt{2}} = \sqrt{\frac{I_1^2 + I_2^2}{2}}$$

$$V_{rms} = 220V$$

But
$$V_{rms} = \frac{peak \, voltage}{\sqrt{2}} = \frac{V_P}{\sqrt{2}}$$

$$V_P = 220\sqrt{2}V$$

19.
$$T = \frac{1}{f} = \frac{1}{50} = 0.0.2s$$

$$\therefore \frac{T}{4} = \frac{0.02}{4} = 0.005s$$

AC Circuits

2011

1.	In an AC circuit an alternating voltage $e = 200\sqrt{2} \sin 100t$ volt is connected to a	a
	capacitor of capacity $1 \mu F$. The rms value of the current in the circuit is	

- a) 100 mA
- b) 200 mA
- c) 20 mA
- d) 10 mA

2. An AC voltage is applied to a resistance R and an inductor L in series. If R and the inductive reactance are both equal to 3Ω , the phase difference between the applied voltage and the current in the circuit is

a) $\pi/4$

b) $\pi/2$

c) Zero

d) $\pi/6$

3. The peak value of an alternating current is 5A and its frequency is 60Hz. Find its rms value and time taken to reach the peak value of current starting from zero

a) 3.536 A, 4.167 ms

b) 3.536 A, 15 ms

c) 6.07 A, 10 ms

d) 2.536 A, 4.167 m

An L – C – R series current is under resonance. If I_m is current amplitude, V_m is 4. voltage amplitude, R is the resistance, z is impedance, X_L is the inductive reactance and X_C is the capacitive reactance then

- a) $I_m = \frac{V_m}{Z}$
- b) $I_m = \frac{V_m}{X}$
- c) $I_m = \frac{V_m}{X_C}$ d) $I_m = \frac{V_m}{R}$

In the case of an inductor

- a) Voltage lags the current by $\frac{\pi}{2}$
- b) Voltage leads the current by $\frac{\pi}{2}$
- c) Voltage leads the current by $\frac{\pi}{2}$
- d) Voltage leads the current by $\frac{\pi}{4}$

a) 0°

6.	The power factor of	an R – L circuit is	$\frac{1}{\sqrt{2}}$. If the frequency	of AC is doubled,
	what will be the pow	er factor?		
	a) $\frac{1}{\sqrt{3}}$	b) $\frac{1}{\sqrt{5}}$	c) $\frac{1}{\sqrt{7}}$	d) $\frac{1}{\sqrt{11}}$
7.	An ideal choke drav	vs a current of 8A w	hen connected to an A	C supply of 100V,
	50Hz. A pure resisto	or draws a current of	f 10A when connected t	o the same source.
	The ideal choke and	the resistor are com	nected in series and the	n connected to the
	AC source of 150V,	40Hz. The current in	the circuit becomes	
	a) $\frac{15}{\sqrt{2}}A$	b) 8A	c) 18A	d) 10A
8.	In an AC circuit the	potential difference	V and current i are give	en respectively by
	$V = 100\sin(100t)$ volt	and $i = 100 \sin \left(100t \right)$	$+\frac{\pi}{3}$ mA. The power dis	ssipated in the
	circuit will be			
	a) $10^4 W$	b) 10 W	c) 2.5 W	d) 5 W
9.	An inductor L, a cap	pacitor of $20\mu F$ and	a resistor of 10Ω are of	connected in series
	with an AC source o	f frequency 50Hz. If	the current in the phas	e with the voltage,
	then the inductance	of the inductor is		
	a) 2.00 H	b) 0.51 H	c) 1.5 H	d) 0.99 H
10.	The impedance of a	circuit, when a resis	stance R and an inducto	or of inductance L
	are connected in seri	es in an AC circuit o	f frequency f, is	
	a) $\sqrt{R + 2\pi^2 f^2 L^2}$ c) $\sqrt{R^2 + 4\pi^2 f^2 L^2}$		b) $\sqrt{R + 4\pi^2 f^2 L^2}$	
	c) $\sqrt{R^2 + 4\pi^2 f^2 L^2}$		d) $\sqrt{R^2 + 2\pi^2 f^2 L^2}$	
11.	In a series L – C – F	R circuit, resistance	$R = 10\Omega$ and the impeda	ance $Z = 10\Omega$. The
phase difference between the current and the voltage is				

c) 45°

b) 30°

d) 60°

12.	The inductive time constant in an electrical circuit is						
	a) LR	b) $\frac{L}{R}$	c) $\sqrt{\frac{L}{R}}$	d) $\frac{R}{L}$			
13.	In a $L - C - R$ ci	ircuit $R = 10 \Omega$. When	capacitance C is rem	oved, the current lags			
	behind the volta	behind the voltage by $\frac{\pi}{3}$, when inductance L is removed, the current leads the					
	voltage by $\frac{\pi}{3}$. The	e impedance of the cir	cuit is				
	a) 50Ω	b) 100Ω	c) 200Ω	d) 400Ω			
14.	In an L – C – R se	eries Ac circuit at res	onance	4			
	a) The capacitive r	reactance is more than	the inductive reactance				
	b) The capacitive i	reactance equals the inc	ductive reactance				
	c) The capacitive r	reactance is less than th	ne inductive reactance				
	d) The power dissi	pated is minimum					
15.	An L – C – R seri	ies circuit consists of	a resistance of 10Ω a	capacitor of reactance			
6.0Ω and an inductor coil. The circuit is found to resonate when put acr							
	300V, 100Hz supp	ply. The inductance o	f coil is (taking $\pi = 3$)				
	a) 0.1 H	b) 0.01 H	c) 0.2 H	d) 0.02 H			
16.	A capacitor or ca	pacitance $1\mu F$ is cha	arged to a potential of	1V. It is connected in			
	parallel to an ind	luctor of inductance1	$0^{-3}H$. The maximum	current that will flow			
	in the circuit has	the value					
	a) $\sqrt{1000} mA$	b) 1 A	c) 1 mA	d) 1000 mA			
17.	Assertion: For an	ı electric lamp conne	ected in series with a v	variable capacitor and			
	AC source, its brightness increases with increase in capacitance						
	Reason: Capaciti	ve reactance decrease	es with increase in				
	1) Both assertion a	and reason are true and	reason is the correct ex	planation of assertion			
1	2) Both assertion	and reason are true	but reason is not the	correct explanation of			
	assertion						
	3) Assertion is true	e but reason is false					
	4) Assertion is fals	se but reason is true					

- 18. In an L R circuit, the value of L is $\left(\frac{0.4}{\pi}\right)H$ and the value of R is 30Ω . If in the circuit, an alternating emf of 200V at 50 cycle/s is connected, the impedances of the circuit and current will be
 - a) 11.4Ω , 17.5A
- b) 30.7Ω , 6.5A
- c) 40.4Ω , 5A
- d) 50Ω , 4A

19. Power dissipated in an L-C-R series circuit connected to an AC source of emf ε is

a)
$$\frac{\varepsilon^2 R}{\left[R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2\right]}$$

b)
$$\frac{\varepsilon^2 \sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}{R}$$

c)
$$\frac{\varepsilon^2 \left[R^2 + \left(L\omega - \frac{1}{C\omega} \right)^2 \right]}{R}$$

d)
$$\frac{\varepsilon^2 R}{\sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}$$

- 20. An AC voltage is applied to a pure inductor L, drives a current in the inductor. The current in the inductor would be
 - a) Ahead of the voltage by $\pi/2$

b) Lagging the voltage by $\pi/2$

- c) Ahead of the voltage by $\pi/4$
- d) Lagging the voltage by $3\pi/4$
- 21. The average power dissipated in a pure capacitance AC circuit is
 - a) CV

- b) Zero
- c) $\frac{1}{CV^2}$
- d) $\frac{1}{4}CV^2$

- 22. In a pure inductive circuit, current
 - a) Lags behind emf by $\frac{\pi}{2}$

b) Leads the emf by $\frac{\pi}{2}$

c) Lags behind by π

- d) Leads the emf by π
- 23. An alternating current of rms value 10A is passed through a 12Ω resistor. The maximum potential difference across the resistor is
 - a) 20 V
- b) 90 V

- c) 169.68 V
- d) None of these

- 24. Same current is flowing in to alternating circuits. The first circuit contains only inductance and the other contains only a capacitor. If the frequency of the emf of AC is increased, the effect on the value of the current will be
 - a) Increases in the first circuit and decreases in the other
 - b) Increases in both the circuits
 - c) Decreases in both the circuits
 - d) Decreases in the first circuit and increases

- 25. An AC source of angular frequency ω is fed across a resistor R and a capacitor C in series. The current registered is I. If now the frequency of source is changed to $\omega/3$ (but maintaining the same voltage), the current in the circuit is found to be halved. Calculate the ratio of reactance to resistance at the original frequency ω
 - a) $\sqrt{\frac{3}{5}}$

b) $\sqrt{\frac{2}{5}}$

c) $\sqrt{\frac{1}{5}}$

- d) $\sqrt{\frac{4}{5}}$
- 26. What is the value of inductance L for which the current is a maximum in a series L C R circuit with $C = 10\mu F$ and $\omega = 1000 \, s^{-1}$?
 - a) 100 mH

- b) 1 mH
- c) Cannot be calculated unless R is known
- d) 10 mH
- 27. In non resonant circuit, what will be the nature of the circuit for frequencies higher than the resonant frequency?
 - a) Resistive
- b) Capacitive
- c) Inductive
- d) None of the above
- 28. A coil has an inductance of 0.7H and is joined in series with a resistance of 20Ω . When an alternating emf of 220V at 50 cps is applied to it, then the wattles component of the current in the circuit is
 - a) 5 A

- b) 0.5 A
- c) 0.7 A
- d) 7 A

- 29. In L C R circuit what is the phase angle ϕ ?
 - a) 90°

- b) 180°
- c) 0°

- d) 60°
- 30. In R C circuit $\omega = 100 \, rad \, s^{-1}$, $R = 100 \, \Omega$, $C = 20 \, \mu F$. What is impedance?
 - a) 510Ω
- b) 200Ω
- c) 250Ω
- d) 300Ω

31.	The power factor in a circuit connected to an AC power supply has a value which
	is

- a) Unity when the circuit contains only inductance
- b) Unity when the circuit contains only resistance
- c) Zero when the circuit contains an ideal resistance only
- d) Unity when the circuit contains an ideal capacitance only
- **32.** In an AC circuit, a resistance of R ohm is connected in series with an inductor of self inductance L. If phase angle between voltage and current be 45°, the value of inductive reactance (X_L) will be equal to
 - a) R

- b) $\frac{R}{8}$
- c) $\frac{R}{4}$
- 33. A transistor – oscillator using a resonant circuit with an inductor L (or negligible resistance) and a capacitor C in series produce oscillations of frequency f. If L is doubled and C is changed to 4C, the frequency will be
 - a) f/4

b) 8f

- c) $f/2\sqrt{2}$
- d) f/2
- The natural frequency (ω_0) of oscillations in L C circuit is given by 34.
 - a) $\frac{1}{2\pi} \frac{1}{\sqrt{IC}}$
- b) $\frac{1}{2\pi}\sqrt{LC}$ c) $\frac{1}{\sqrt{LC}}$
- d) \sqrt{LC}
- In L C- R circuit the resonance condition in terms of capacitive reactance (X_C) **35.** and inductive reactance (X_L) is

- a) $X_C + X_L = 0$ b) $X_C = 0$ c) $X_L = 0$ d) $X_C X_L = 0$

2007

An inductor of inductance L and resistor of resistance R are joined in series and 36. connected by a source of frequency ω . Power dissipated in the circuit is

a)
$$\left(\frac{R^2 + \omega^2 L^2}{V}\right)$$

b)
$$\frac{V^2R}{\left(R^2 + \omega^2 L^2\right)}$$

c)
$$\left(\frac{V}{R^2 + \omega^2 L^2}\right)$$

a)
$$\left(\frac{R^2 + \omega^2 L^2}{V}\right)$$
 b) $\frac{V^2 R}{\left(R^2 + \omega^2 L^2\right)}$ c) $\left(\frac{V}{R^2 + \omega^2 L^2}\right)$ d) $\frac{\sqrt{R^2 + \omega^2 L^2}}{V^2}$

	www.sakshieducation.com					
37.	An inductive coil has a resistance of 100Ω . When an AC signal of frequency 1000					
	Hz is applied to the coil, the voltage leads the current by 45° . The inductance of					
	the coil is					
	a) $\frac{1}{10\pi}$	$2) \frac{1}{20\pi}$	c) $\frac{1}{40\pi}$	d) $\frac{1}{60\pi}$		
38.	The reactance of a	coil when used in the	e AC power supply (2	$20V$, 50 cycle s^{-1}		
	is 50Ω . The inductan	ce of the coil is nearly				
	a) 0.16 H	b) 0.22 H	c) 2.2 H	d) 1.6 H		
39.	An inductance of $\left(\frac{200}{\pi}\right)mH$, a capacitance of $\left(\frac{10^{-3}}{\pi}\right)F$ and a resistance of 10Ω					
	are connected in ser	ies with an AC source	ce 220V, 50Hz. The ph	ase angle of the		
	circuit is					
	a) $\frac{\pi}{6}$	b) $\frac{\pi}{4}$	c) $\frac{\pi}{2}$	d) $\frac{\pi}{3}$		
40.	In a circuit, the current lags behind the voltage by a phase difference of $\pi/2$, the					
	circuit will contain which of the following?					
	a) Only R	b) Only C	c) R and C	d) Only L		
41.	A coil of inductive re	actance 31Ω has a re-	sistance of 8Ω . It is plac	ced in series with		
	a condenser of capac	itive reactance 25Ω . $^{\prime}$	The combination is con	nected to an AC		
	source of 110V. The p	oower factor of the cir	cuit is			
	a) 0.56	b) 0.64	c) 0.80	d) 0.33		
42.	In a choke coil, the re	eactance X_L and resis	tance R are such that			
	a) $X_L = R$	b) $X_L \gg R$	c) $X_L \ll R$	d) $X_L = \infty$		
43.	The power factor of a	a series L – C – R circ	uit when at resonance is	;		
	a) Zero b) 0.5	c) 1.0 d) D	Depends on values of L, C	and R		

2000					
44.	In a series $L-C-R$ circuit the frequency of a 10V, AC voltage source is adjusted				
	in such a fashion that the reactance of the inductor measures 15Ω and that of the				
	capacitor 11Ω . If $R =$	3Ω , the potential diffe	erence across the series	combination of	
	L and C will be				
	a) 8 V	b) 10 V	c) 22 V	d) 52 V	
45.	An L - C circuit is	s in the state of reso	nance. If $C = 0.1 \mu F$ a	and $L = 0.25H$,	
	neglecting ohmic resi	stance of circuit, what	is the frequency of osci	llations?	
	a) 1007 Hz	b) 100 Hz	c) 109 Hz	d) 500 Hz	
46.	In an AC circuit, the	e current lags behind	the voltage by $\pi/3$. The	components of	
	the circuit are				
	1) R and L	2) L and C	3) R and C	4) Only R	
47.	What is the ratio of i	nductive and capacitive	e reactance in AC circu	it?	
	a) $\omega^2 LC$	b) 1	c) zero	d) $\omega^2 L$	
48.	If a circuit made up	of a resistance 1Ω and	inductance 0.01H, and	alternating emf	
	200V at 50Hz is com	nected, then the phase	difference between the	current and the	
	emf in the circuit is				
	a) $tan^{-1}(\pi)$	b) $\tan^{-1}\left(\frac{\pi}{2}\right)$	c) $\tan^{-1}\left(\frac{\pi}{4}\right)$	d) $\tan^{-1}\left(\frac{\pi}{3}\right)$	
49.	A circuit draws 330V	V from a 110V, 60Hz A	C line. The power fact	or is 0.6 and the	
	current lags the volt	age. The capacitance o	f a series capacitor tha	t will result in a	
	power factor of unity	is equal to			
2005	a) 31 <i>µF</i>	b) 54 μF	c) 151 <i>µF</i>	d) 201 <i>μF</i>	
2005		1.D. 4.1.	• • • • • • • • • • • • • • • • • • • •	14	
50.	In a circuit, L, C and R are connected in series with an alternating voltage source				
	1	urrent leads the voltag	e by 45°. The value of C	. 1S	
	a) $\frac{1}{2\pi f \left(2\pi f L + R\right)}$		b) $\frac{1}{\pi f \left(2\pi f L + R\right)}$		
	c) $\frac{1}{2\pi f \left(2\pi f L - R\right)}$		d) $\frac{1}{\pi f \left(2\pi f L - R\right)}$		

AC Circuits

Key

Solutions

1.
$$e = 200\sqrt{2} \sin 100t$$
 and $C = 1\mu F$
 $E_{rms} = 200V$
 $X_C = \frac{1}{\omega C} = \frac{1}{1 \times 10^{-6} \times 100} = 10^4 \Omega$
 $i_{rms} = \frac{E_{rms}}{X_c}$
 $i_{rms} = \frac{200}{10^4} = 2 \times 10^{-2} A = 20 mA$

2. $\tan \phi = \frac{3\Omega}{3\Omega}$ Or $\phi = \frac{\pi}{4} rad$

3. $i_{rms} = \frac{i_0}{\sqrt{2}} = \frac{5}{\sqrt{2}} = 2.536A$
 $T = \frac{1}{4 \times 60} = 4.167 ms$

6. $\cos \phi = \frac{R}{\sqrt{R^2 + 4\omega^2 L^2}} = \frac{R}{\sqrt{R^2 + 4R^2}} = \frac{1}{\sqrt{5}}$

7.
$$R = \frac{100}{10} = 10\Omega$$

$$X_L = 2\pi f L$$

$$\frac{100}{8} = 2\pi \times 50 \times L$$

$$\Rightarrow L = \frac{1}{8\pi}H$$

$$X_i = 2\pi f L = 2\pi \times 40 \times \frac{1}{8\pi}$$

$$X_i = 2\pi fL = 2\pi \times 40 \times \frac{1}{8\pi} = \sqrt{(10)^2 + (10)^2} = 10\sqrt{2}\Omega$$

$$i = \frac{V}{Z} = \frac{150}{10\sqrt{2}} = \frac{15}{\sqrt{2}}A$$

8.
$$V_0 = 100V$$
, $i_0 = 100 \text{ mA} = 100 \times 10^{-3} \text{ A}$ and $\phi = \frac{\pi}{3} = 60^{\circ}$

$$P = \frac{V_0 i_0}{2} \cos \phi = \frac{100 \times 100 \times 10^{-3}}{2} \times \cos 60^0 = 2.5 \text{ W}$$

9.
$$\tan \phi = \frac{\omega L - \frac{1}{\omega C}}{R} = 0$$

$$\omega L - \frac{1}{\omega C}$$

$$L = \frac{1}{\omega^2 C}$$

Here
$$\omega = 2\pi f = 2 \times 3.14 \times 50 s^{-1} = 314 s^{-1}$$

And
$$C = 20\mu F = 20 \times 10^{-6} F$$

$$\therefore L = \frac{1}{\left(314s^{-1}\right)^2 \times \left(20 \times 10^{-6} F\right)} = 0.51H$$

$$11. Z = \sqrt{R^2 + X_L^2}$$

$$X_L = \omega L = 2\pi f L$$

$$Z = \sqrt{R^2 + 4\pi^2 f^2 L^2}$$

$$10 = \sqrt{(10)^2 + (X_L - X_C)^2}$$

$$\Rightarrow 100 = 100 + (X_L - X_C)^2$$

$$\Rightarrow X_L - X_C = 0$$

13.
$$\tan \frac{\pi}{3} = \frac{X_L}{R}$$

When L is removed, $\tan \frac{\pi}{3} = \frac{X_L}{R}$

$$Z=R=100\Omega$$

$$\Rightarrow i_0 = \frac{220 \times \sqrt{2}}{100\pi} = \frac{220 \times \sqrt{2}}{100 \times 3.14}$$

$$I_0 = 1A$$

15.
$$\omega_0 = 2\pi n - 2\pi \times 100$$

$$\omega_0 = 2 \times 3 \times 100 = 600 rad / s$$

Also,
$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$X_C = \frac{1}{C\omega_0} = 60\omega$$

$$\Rightarrow C = \frac{1}{\omega_0 \times 60} = \frac{1}{600 \times 60}$$

$$600 - \frac{1}{\sqrt{L\left(\frac{1}{36 \times 10^3}\right)}}$$

$$36 \times 10^4 = \frac{36 \times 10^3}{L}$$

$$L = \frac{36 \times 10^3}{36 \times 10^4} = \frac{1}{10} = 0.1H$$

16.
$$q = q_0 \sin \omega t$$

Or
$$I_0 = \omega q_0 = \text{maximum current}$$

$$\omega = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{10^{-9}}} = (10^9)^{1/2}$$

$$I_0 = (10^9)^{1/2} \times (1 \times (10^{-6})) = \sqrt{1000} \, mA$$

18.
$$X_L = \omega L = 2\pi f L = 2\pi \times 50 \times \frac{0.4}{\pi} = -40\Omega$$

$$R = 30\Omega$$

$$Z = rR^2 + X_L^2 = \sqrt{(30)^2 + (40)^2} = 50\Omega$$

$$i_{rms} = \frac{v_{rms}}{X} = \frac{200}{50} = 4A$$

25.
$$I_{rms} = \frac{V_{rms}}{\sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}}$$

Also,
$$\frac{I_{rms}}{2} = \frac{V_{rms}}{\sqrt{R^2 + \left[\frac{1}{\frac{\omega c}{3}}\right]^2}} = \frac{V_{rms}}{\sqrt{R^2 + \frac{9}{\omega^2 C^2}}}$$

$$\therefore 3R^2 = \frac{5}{\omega^2 C^2}$$

$$\Rightarrow \frac{1}{\frac{\omega C}{R}} = \sqrt{\frac{3}{5}}$$

26.
$$i = \frac{V}{\sqrt{R^2 + (X_L = X_C)^2}}$$

But,
$$X_L = X_C$$

Or
$$\omega L = \frac{1}{\omega C}$$
 Or $L = \frac{1}{\omega^2 C}$

$$\omega = 1000 \, s^{-1}, C = 10 \mu F = 10 \times 10^{-6}$$

$$\therefore L = \frac{1}{(1000)^2 \times 10 \times 10^{-6}} = 0.1 \text{ H}$$

28. Wattless component of current =
$$I_v \sin \theta = \frac{E_V}{Z} \sin \theta$$

$$=\frac{220}{\sqrt{R^2+\omega^2L^2}}\times\frac{\omega L}{\sqrt{R^2+\omega^2L^2}}=\frac{220\times\omega L}{\left(R^2+\omega^2L^2\right)}$$

www.sakshieducation.com

$$= \frac{220 \times (2\pi \times 50 \times 0.7)}{(220)^2 + (2\pi \times 50 \times 0.7)^2} = \frac{1}{2} = 0.5A$$

34.
$$X_L = X_C \Rightarrow \omega_o L = \frac{1}{\omega_0 C}$$

$$\omega_0^2 = \frac{1}{LC}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$2\pi f = \frac{1}{\sqrt{LC}}$$

$$f = \frac{1}{2\pi\sqrt{LC}}$$

35. Resonance condition is $X_L = X_C$ or $X_C - X_L = 0$

37.
$$\tan \phi = \frac{X_L}{R}$$

$$\Rightarrow \tan 45^0 = \frac{L\omega}{R}$$

$$\Rightarrow L = \frac{R}{\omega} = \frac{100}{2\pi (1000)}$$

$$\Rightarrow L = \frac{1}{20\pi}$$

38.
$$X_L = \omega L = 2\pi f L$$

$$X_L = 50\Omega, f = 50cps$$

$$L = \frac{X_L}{\omega} = \frac{X_L}{2\pi f} = \frac{50}{2\pi \times 50} = \frac{1}{2 \times 3.14} = 0.16H$$

39.
$$\tan \theta = \frac{X_L - X_C}{R}$$

$$X_L = 2\pi f L = 2\pi \times 50 \times \left[\frac{200}{\pi} \times 10^{-3} \right] = 20\Omega$$

$$X_C = \frac{1}{2\pi fC} = \frac{1 \times \pi}{2\pi \times 50 \times 10^{-3}} = 10\Omega$$

And
$$R = 10\Omega$$

$$\tan \theta = \frac{20-10}{10} = 1$$

$$\tan \theta = \tan \frac{\pi}{4}$$

$$\theta = \frac{\pi}{4}$$

45.
$$f = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{0.25 \times 0.1 \times 10^{-6}}} \approx 1007 \, Hz$$

47.
$$X_L = \omega L$$
 and $X_C = \frac{1}{\omega C}$

$$\frac{X_L}{X_C} = \frac{\omega L}{1/\omega C} = \omega^2 LC$$

48.
$$\tan \phi = \frac{X_L}{R}$$
 and $X_L = \omega L = 2\pi f L = 2\pi \times 50 \times 0.01 = \pi \Omega$

Also
$$R = 1\Omega$$
 : $\phi = \tan^{-1}(\pi)$

49.
$$R = \frac{V_2}{P} = \frac{110 \times 110}{330} = \frac{110}{3} \Omega$$

Cos
$$R = \frac{V_2}{P} = \frac{110 \times 110}{330} = \frac{110}{3} \Omega = 0.6.$$

$$\frac{R}{\sqrt{R^2 + X_I^2}} = 0.6$$

$$R^2 + X_L^2 = \left(\frac{R}{0.6}\right)^2$$

$$X_L^2 = \frac{R^2}{(0.6)^2} - R^2$$
 $\Rightarrow X_L^2 = \frac{R^2 \times 0.64}{0.36}$

$$X_L = \frac{0.8R}{0.6} = \frac{4R}{3}$$

And

$$X_L = K_C$$

$$X_C = \frac{4R}{3} = \frac{4}{3} \times \frac{100}{3} = \frac{440}{9} \Omega$$

$$\frac{1}{2\pi f} = \frac{440}{9} \Omega$$

$$C = \frac{9}{2 \times 3.14 \times 60 \times 440}$$

$$-0.000054 F = 54 \mu F$$

50.
$$\tan \phi = \frac{\omega L - \frac{1}{\omega C}}{R}$$

$$\phi = 45^{\circ}$$

$$\therefore \tan 45^\circ = \frac{\omega L - \frac{1}{\omega C}}{R}$$

$$\Rightarrow 1 = \frac{\omega L - \frac{1}{\omega C}}{R}$$

$$\Rightarrow R = \omega L - \frac{1}{\omega C}$$

$$\Rightarrow \omega C = \frac{1}{(\omega L - R)}$$

$$\Rightarrow C = \frac{1}{2(\omega L - R)} = \frac{1}{2\pi f (2\pi f L - R)}$$

Growth and Decay of Current

2010

1. A coil of resistance R and inductance L is connected to a battery of emf E volt. The final current in the coil is

a)
$$\frac{E}{R}$$

b)
$$\frac{E}{L}$$

c)
$$\sqrt{\frac{E}{R^2 + L^2}}$$

d)
$$\sqrt{\frac{EL}{R^2 + L^2}}$$

2008

3. A coil of inductance 300mH and resistance 2Ω is connected to a source of voltage 2V. The current reaches half of its steady state value in

2007

4. A coil of 40H inductance is connected in series with a resistance of 8Ω and this combination is connected to the terminals of 2V battery. The inductive time constant of the circuit is (in second)

5. In an L-R circuit, time constant is that time in which current grows from zero to the value

a)
$$0.63I_o$$

b)
$$0.50I_{o}$$

c)
$$0.37 I_o$$

d)
$$I_o$$

2004

6. In a series resonant L – C – R circuit, the voltage across R is 100V and $R=1k\Omega$ with $C=2\mu F$. The resonant frequency ω is $200\,rad\,s^{-1}$. At resonance the voltage across L is

a)
$$2.5 \times 10^{-2} V$$

d)
$$4 \times 10^{-3} V$$

Growth and Decay of Current

Key

- 1)

Hints

At time t = 0, i.e., when capacitor is charging, current $I = \frac{2}{1000} = 2mA$ 2.

$$I = \frac{2}{2000} = 1mA$$

 $I = I_o \left(1 - e^{-Rt/L} \right)$ 3.

$$\frac{I_o}{2} = I_o \left(1 - e^{-Rt/L} \right)$$

$$\frac{1}{2} = \left(1 - e^{-Rt/L}\right)$$

$$e^{-Rt/L} = 1/2$$

$$\frac{Rt}{L} = \ln 2$$

$$\therefore \frac{L}{R} \ln 2 = \frac{300 \times 10^{-3}}{2} \times 0.693$$

$$= 150 \times 0.693 \times 10^{-3}$$

$$= 0.10395 \text{ s} = 0.1 \text{ s}$$

- $t = \frac{L}{R} = \frac{40}{8} = 5 s$

5.
$$I = I_o \left(1 - e^{-1/\tau} \right)$$

$$\tau \left(= \frac{L}{R} \right)$$
 Is called time constant.

At
$$t = \tau$$

$$I = I_o \left(1 - e^{-1} \right)$$

Or
$$I = I_o \left(1 - \frac{1}{e} \right)$$

Or
$$I = 0.63 I_o$$

6.
$$\omega L = \frac{1}{\omega C}$$

$$I = \frac{V_R}{R} = \frac{100}{1000} = 0.1A$$

$$V_L = IX_L = I\omega L$$

But
$$\omega L = \frac{1}{\omega C}$$

$$\therefore V_L = \frac{1}{\omega C} = \frac{0.1}{200 \times 2 \times 10^{-6}} = 250V$$