Thermodynamics

First Law of Thermodynamics

201	-
7111	

1.	When 1 kg of ice at $0^{\rm o}{\it C}$ melts to water at $0^{\rm o}{\it C}$, the resulting change	in its	ent	ropy,
	taking latent heat of ice to be 80 cal / °C, is			

- a) $8 \times 10^4 cal / K$
- b) 80 cal/K
- c) 293 cal/K

d)273 cal/K

2010

2. A cylinder of fixed capacity (of 44.8 L) contains 2 moles of helium gas at STP. What is the amount of heat needed to raise the temperature of the gas in the cylinder by

 $20^{\circ} C$? (Use $R = 8.31 J \, mol^{-1} \, K^{-1}$)

- a) 996J
- b) 831 J

- c) 498 J
- d) 374 J

3. Ten moles of an ideal gas at constant temperature 600K is compressed from 100L to 10L. The work done in the process is

- a) $4.11 \times 10^4 J$
- b) $-4.11 \times 10^4 J$
- c) $11.4 \times 10^4 J$
- d) $-11.4 \times 10^4 J$

4. A perfect gas goes from state A to state B by absorbing $8 \times 10^5 J$ of heat and doing $6.5 \times 10^5 J$ of external work. It is now transferred between the same two states in another process in which it absorbs $10^5 J$ of heat. In the second process

a) Work done on gas is $10^5 J$

b) Work done on gas in $0.5 \times 10^5 J$

c) Work done by gas is $10^5 J$

d) Work done by gas is $0.5 \times 10^5 J$

5. A constant volume gas the thermometer work on

a) Archimedes principle

b) Pascal's law

c) Boyle's law

d) Charles' law

2008

6.	If Q, E and W denote respectively the heat added change in internal energy and the
	work done in a closed cycle process then

a) W = 0

b) O = W = 0

c) E = 0

d) Q = 0

7. Two rigid boxes containing different ideal gases are placed on table. Box A contains one mole of nitrogen at temperature T_0 , while box B contains one mole of helium at temperature $(7/3)T_0$. The boxes are then put into thermal contact with each other, and heat flows between them until the gases reach a common final temperature (ignore the heat capacity of boxes). Then, the final temperature of the gases, $T_{\scriptscriptstyle f}$, in terms of T_0 is

a) $T_f = \frac{3}{7}T_0$ b) $T_f = \frac{7}{3}T_0$

An ideal gas is taken through a cyclic thermo dynamical process through four steps. 8. The amounts of heat involved in these steps are $Q_1 = 5960J$ b, $Q_2 = 5585J$, $Q_3 = -2980J$; $Q_4 = 3645J$; respectively. The corresponding works involved are $W_1 = 2200J$, $W_2 = -825J$, $W_3 = -1100J$ and W_4 respectively. The value of W_4 is

a) 1315 J

c) 765 J

d) 675 J

2007

A gas is heated at constant pressure. The fraction of heat supplied used for external 9.

b) $\left(1-\frac{1}{\nu}\right)$

c) $\gamma - 1$

d) $\left(1-\frac{1}{v^2}\right)$

1cm³ of water at its boiling point absorbs 540 cal of heat of become steam with a volume of $1671cm^3$. If the atmospheric pressure = $1.013 \times 10^5 Nm^{-2}$ and the mechanical equivalent of heat = 4.19J cal the energy spent in this process in overcoming intermolecular forces is

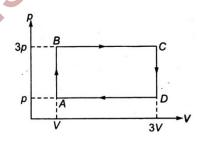
a) 540 cal

b) 40 cal

c) 500 cal

d) Zero

2004


11. Assertion (A): Thermodynamic processes in nature are irreversible.

Reason (R): Dissipative effects cannot be eliminated.

- a) Both assertion and reason are true and reason is the correct explanation of assertion.
- b) Both assertion and reason are true but reason is not the correct explanation of assertion.
- c) Assertion is true but reason is false.
- d) Both assertion and reason are false.
- 12. Air is expanded from 50L to 150L at 2 atm pressure. The external work done is (1 atm 1×10^5 Nm⁻²)
 - a) $2 \times 10^{-8} J$
- b) $2 \times 10^4 J$
- c) 200J
- d) 2000J
- 13. The amount of work, which can be obtained by supplying 200cal of heat, is
 - a) 840 J
- b) 840 erg
- c) 840 W
- d) 840 dyne

2003

- 14. The intensive property among the following is
 - a) Energy
- b) Volume
- c) Entropy
- d) Temperature
- 15. An ideal monatomic gas is taken around the cycle ABCDA as shown in figure. The work done during the cycle is given by

- a) 8 pV
- b) pV

- c) 4 pV
- d) 2 pV

Thermodynamic Processes

2010

16. During an adiabatic expansion the increase in volume is associated with which of the following possibilities with respect to pressure and temperature?

Pressure Temperature

- a) Increase Increase
- b) Increase Decrease
- c) Increase Decrease
- b) Decrease Increase
- 17. A mono-atomic gas is suddenly compressed to (1/8)th of its initial volume adiabatically. The ratio of its final pressure to the initial pressure is (given the ratio of the specific heats of the given gas to be 5/3)
 - a) 32

b) 40/3

c) 24/5

- d) 8
- 18. Assertion (A): The isothermal curve intersects each other at a certain point.

Reason (R): The isothermal change takes place rapidly, so the isothermal curve have very little slope.

- a) Both assertion and reason are true and reason is the correct explanation of assertion.
- b) Both assertion and reason are true but reason is not the correct explanation of assertion.
- c) Assertion is true but reason is false.
- d) Both assertion and reason are false.
- 19. In an adiabatic process where pressure is increased by $\frac{2}{3}\%$. If $\frac{C_p}{C_v} = \frac{3}{2}$, then the

volume decreases by about

a)
$$\frac{4}{9}\%$$

b)
$$\frac{2}{3}\%$$

d)
$$\frac{9}{4}$$
%

20.	The internal energy of an ideal gas increases during an isothermal process when the

- a) Expanded by adding more molecules to it
 - b) Expanded by adding more heat to it
- c) Expanded against zero pressure
- d) Compressed by doing work on it
- 21. A sample of gas expands from volume V_1 to V_2 . The amount of work done by the gas is greatest when the expansion is
 - a) Adiabatic
- b) Isobaric
- c) Isothermal
- d) Equal in all above cases

2005

2007

gas is

22. Assertion (A): Air quickly leaking out of a balloon becomes cooler.

Reason (R): The leaking air undergoes adiabatic expansion.

- a) Both assertion and reason are true and reason is the correct explanation of assertion.
- b) Both assertion and reason are true but reason is not the correct explanation of assertion.
- c) Assertion is true but reason is false.
- d) Both assertion and reason are false.
- 23. A perfect gas is found to obey the relation $PV^{3/2}$ = constant during an adiabatic process, if such a gas initially at a temperature T, is compressed to half of its initial volume, then its final temperature will be
 - a) 27

b) 4T

- c) $(2)^{1/2}T$
- d) $2(2)^{1/2}T$

2004

24. A gas is compressed at a constant pressure of $50 \, Nm^{-2}$ from a volume of $10m^3$ to a volume of $4m^3$. Energy of 100J, then added to gas by heating. Its internal energy is

a) Increased by 400J

www.sakshieducation.com^y 200J

d) Decreased by 200J

c) Increased by 100J

25.	If the ratio of sp	ecific heats of a gas	s constant pressure to t	hat at constant volume is γ
	the change in in	ternal energy of a g	gas when the volume ch	anges from V to 2V at
	constant pressur	re p, is		
	a) pV	b) $\frac{R}{\gamma - 1}$	c) $\frac{pV}{\gamma - 1}$	d) $\frac{\gamma pV}{\gamma - 1}$
	S	Second Law of Th	ermodynamics and E	entropy
2010 26.		rrect statement fro	m the following.	
				cient of performance of a
	refrigerator can		can be 1, but the event	cient of performance of a
	_	♦	a is kasisally the nains	inle of consequention of
		of thermodynamic	es is basically the princ	iple of conservation of
	energy.	64 (5)		1 . 1
			mics does not allow sev	eral phenomena consistent
	with the first lav	~'U'		
	S4: A process w	hose sole result is the	he transfer of heat from	n a colder object to a hotter
	object is imposs	ble.		
	a) S1	b) S3	c) S2	d) S4
27.	Which of the fol	lowing statement is	s correct for any therm	odynamics system?
	a) The internal er	nergy changes in all	processes.	
	b) Internal energy	y and entropy are sta	ate functions.	

c) The change in entropy can never be zero.

d) The work done in an adiabatic process is always zero.

a) The entire chamber of the refrigerator is cooled quickly due to convection.

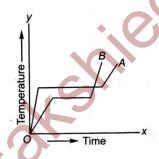
28. The freezer in a refrigerator is located at the top section so that

20	ΛQ
4 U	vo

	b) The motor is not	heated.			
	c) The heat gained to	from the envi	ronment is hi	gh.	
	d) The heat gained	from the envi	ronment is lo	w.	
29.	A Carnot engine ta	akes heat fro	m a reservoi	r at 627° <i>C</i>	and rejects heat to a sink at
	27°C . Its efficiency	y will be			
	a) 3/5	b) 1/3		c) 2/3	d) 200/209
200′	7			9	
30.	An engine has an e	efficiency of	$\frac{1}{6}$. When the	temperatu	re of sink is reduced by $62^{\circ}C$,
	its efficiency is dou	ıbled. Tempe	erature of th	e source is	
	a) 124°C	b) 37°C	.0	c) 62°C	d) 99°C
31.	An ideal gas heat e	b) $1/3$ c) $2/3$ d) $200/209$ e has an efficiency of $\frac{1}{6}$. When the temperature of sink is reduced by $62^{\circ}C$, next is doubled. Temperature of the source is b) $37^{\circ}C$ c) $62^{\circ}C$ d) $99^{\circ}C$ gas heat engine operates in a Carnot cycle between $227^{\circ}C$ and $127^{\circ}C$. It is keal at the higher temperature. The amount of heat (in keal) converted			
	absorbs 6 kcal at t	he higher ter	nperature. T	The amount	of heat (in kcal) converted
	into work is equal	to			
	a) 1.6	b) 1.2		c) 4.8	d) 3.5
200		•			
32.	Assertion (A): In a	n isolated sy	stem the ent	ropy increa	ises.
	Reason (R): The p	rocess in an	isolated syste	em is adiab	atic.
	a) Both assertion an	d reason are	true and reaso	on is the cor	rect explanation of assertion.
	b) Both assertion ar	nd reason are	true but reaso	on is not the	correct explanation of assertion.
	c) Assertion is true	but reason is	false.		
	d) Both assertion ar	nd reason are	false.		

33.	Assertion (A): The Carnot cycle is useful in understanding the performance of heat								
	engines.								
	Reason (R): The Carnot cycle provide a way of determining the maximum possible								
	efficiency achievable with reservoirs of given temperature.								
	a) Both assertion an	d reason are t	rue and reaso	on is the correct	t explanation of assertion.				
	b) Both assertion an	d reason are t	rue but reaso	on is not the cor	rect explanation of assertion.				
	c) Assertion is true	but reason is f	false.		-01				
	d) Both assertion an	d reason are f	false.		C				
34.	The inside outside	temperature	s of refriger	ators are 273K	X and 303K respectively.				
	Assuming that refu	rigerator cycl	le is reversit	ole, for every j	oule of work done the heat				
	delivered to the su	rrounding wi	ill be						
	a) 10 J	b) 20 J		c) 30 J	d) 50 J				
35.	A Carnot engine h	as efficiency	1/5. Efficien	cy becomes 1/3	3 when temperature of sink				
	is decreased by 501	K. What is th	e temperatu	re of sink?					
	a) 325 K	b) 375 K	.0	c) 300 K	d) 350 K				
36.	Consider the states	ment (A) and	(B) and ide	ntify the corre	ct answers				
	A: First law of thermodynamics specifics the conditions under which a body can use								
	its heat energy to produce the work.								
	B: Second law of thermodynamics states that heat always flows from hot body to cold								
	body that itself.								
	a) Both A and B are	true		b) Both A and	d B are false				
	c) A is true but B is	false		d) A is false I	3 is true				
37.	Efficiency of engin	e working at	$40^{0}C$, $20^{0}C$	is					
	a) 0.064 %	b) 0.645		c) 64%	d) 6.4%				
200	5								
38.	Carnot engine can	not give 100%	% efficiency	, because we ca	annot				
	a) Eliminate friction b) Find ideal sources								

c) Prevent radiation


- d) Reach absolute zero temperature
- 39. In heat engine sink is fitted at temperature 27°C and heat of 100 kcal is taken from source at temperature 677°C. Work done in (joule) is
 - a) 0.28×10^6
- b) 2.8×10^6
- c) 28×10^6
- d) 0.028×10^6

Calorimetry

2009

40. Equal masses of two liquids A and B contained in vessels of negligible heat capacity are supplied heat at the same rate. The temperature-time graphs for the two liquids are shown

If S represents specific heat and L represents latent heat of liquid then

- a) $S_A > S_B, L_A < L_B$ b) $S_A > S_B, L_A > L_B$ c) $S_A < S_B, L_A < L_B$ d) $S_A < S_B, L_A > L_B$
- 41. 19g of water at $30^{\circ}C$ and 5g of ice at $-20^{\circ}C$ are mixed together in a calorimeter. What is the final temperature of the mixture? (Given specific heat of ice = 0.5cal $g^{-1}(^{0}C)^{-1}$ and latent heat of fission of ice = $80ca \lg^{-1}$)
 - a) $0^{0}C$
- b) $-5^{\circ}C$
- c) $5^{\circ}C$
- d) $10^{0}C$
- 42. The height of a waterfall is 30m.($g = 9.8ms^{-2}$) the difference between the temperature at the top and the bottom of the waterfall is
 - a) $1.17^{\circ}C$
- b) $2.17^{\circ}C$
- c) $0.117^{\circ}C$
- d) $1.43^{\circ}C$

2006

43. In an energy recycling process, X g of steam at $100^{\circ}C$ becomes water at which converts Y g of ice $0^{\circ}C$ into water at $100^{\circ}C$. The ratio of X and Y will be

a) $\frac{1}{3}$

b) $\frac{2}{3}$

c) 3

d) 2

2005

44. Assertion (A): In pressure temperature (P-T) phase diagram of water, the slope of the melting curve is found to be negative.

Reason (R): Ice contracts on melting to water.

- a) Both assertion and reason are true and reason is the correct explanation of assertion.
- b) Both assertion and reason are true but reason is not the correct explanation of assertion.
- c) Assertion is true but reason is false.
- d) Both assertion and reason are false.

Key

1) c	2) c	3) b	4) d	5) d	6) c	7) c	8) c	9) b	10) c
11) a	12) b	13) a	14) d	15) c	16) b	17) a	18) d	19) a	20) a
21) b	22) a	23) c	24) a	25) c	26) a	27) d	28) a	29) c	30) d
31) b	32) b	33) a	34) a	35) c	36) a	37) d	38) d	39) a	
40) d	41) c	42) c	43) a	44) a					

Hints

First Law of Thermodynamics

1.
$$\Delta S = \frac{ml}{T} = \frac{1000 \times 80}{273} = 293 \, cal \, K^{-1}$$

2. Internal energy =
$$\mu C_V \Delta T$$

$$U = \frac{1}{2} f \mu R \Delta T \left[\because C_{v} = \frac{1}{2} f R \right]$$

$$U = \frac{1}{2} \times 3 \times 2 \times 8.31 \times 20 = 498.63$$

3.
$$W = 2.3026nRT \log_{10} \left(\frac{V_2}{V_1}\right)$$

$$U = \frac{1}{2} f \mu R \Delta T \left[\because C_v = \frac{1}{2} f R \right]$$

$$U = \frac{1}{2} \times 3 \times 2 \times 8.31 \times 20 = 498.6 \text{J}$$

$$W = 2.3026 n R T \log_{10} \left(\frac{V_2}{V_1} \right)$$

$$= 2.3026 \times 10 \times 8.3 \times 600 \log_{10} \left(\frac{10}{100} \right) = -11.4 \times 10^4 \text{J}$$
From first law of thermodynamics
$$dU = dQ - dW$$

$$dU = 8 \times 10^5 - 6.5 \times 10^5$$

4.

$$dU = dQ - dW$$

$$dU = 8 \times 10^5 - 6.5 \times 10^5$$

$$dU = -0.5 \times 10^5 J$$

In the second process, dU remains the same

$$\therefore dW = dQ - dU = 1 \times 10^5 - 1.5 \times 10^5$$

$$dW = -0.5 \times 10^5 J$$

7.
$$\Delta U_A = 1 \times \frac{5R}{2} (T_f - T_0)$$

$$\Delta U_B = 1 \times \frac{3R}{2} (T_f - \frac{7}{3} T_0)$$

Now,
$$\Delta U_A + \Delta U_B = 0$$

$$\frac{5R}{2}(T_f - T_0) + \frac{3R}{2} \left(T_f - \frac{7T_0}{3} \right) = 0$$

$$5T_f - 5T_0 + 3T_f - 7T_0 = 0$$

$$=8T_{f}=12T_{0}$$

$$\Rightarrow T_f = \frac{12}{8}T_0 = \frac{3}{2}T_0$$

8.
$$\Delta Q = Q_1 + Q_2 + Q_3 + Q_4$$

$$= 5960 - 5585 - 2980 + 3645 = 1040J$$

$$\Delta W = W_1 + W_2 + W_3 + W_4$$

$$= 2200 - 825 - 1100 + W_4 = 275 + W_4$$

For a cyclic process $\Delta U = 0$

i.e.,
$$U_f - U_i = 0$$

From first law of thermodynamics,

$$\Delta Q = \Delta U + \Delta W$$

$$1040 = 0 + 275 + W_{4}$$

Or
$$W_4 = 765J$$

- 12. Work done $W = p \times \Delta V = 2 \times 10^5 \times (150 50) \times 10^{-3} = 2 \times 10^4 J$
- 13. Work done = heat supplied

$$W = 200 \times 4.2$$

$$W = 840 J$$

15. The work done = area of p-V rectangle

$$W = AD \times CD = (3V - V)(3p-p) = 2V \times 2p = 4pV$$

Thermodynamics Processes

16.
$$\Delta Q = \Delta U + \Delta W$$

For an adiabatic process

$$\Delta Q = 0$$

$$\Delta U = -W$$

In adiabatic process

$$p \propto \frac{1}{V^r}$$
 and $T \propto \frac{1}{V^{r-1}}$

 $\gamma > 1$, because volume increases

Then, p and T will decreases

 $pV^{\gamma} = \text{Constant}$ 17.

$$\Rightarrow \frac{p_1}{p_2} = \left(\frac{V_2}{V_1}\right)^{\gamma}$$

$$\Rightarrow \frac{p_1}{p_2} = \left(\frac{1}{8}\right)^{5/3}$$

$$\Rightarrow \frac{p_1}{p_2} = \left(\frac{1}{2^3}\right)^{5/3} = \frac{1}{32}$$

$$\therefore \frac{p_2}{p_1} = 32$$

19. $pV^{\gamma} = \text{Constant (Say C)}$

Here
$$\gamma = \frac{C_p}{C} = \frac{3}{2}$$

$$\therefore pV^{3/2} = C$$

$$\Rightarrow \log p + \frac{3}{2} \log V = \log C$$

$$\Rightarrow \frac{\Delta p}{p} + \frac{3}{2} \frac{\Delta V}{V} = 0$$

$$\Rightarrow \frac{\Delta p}{p} + \frac{3}{2} \frac{\Delta V}{V} = 0$$

$$\therefore \frac{\Delta V}{V} \times 100 = -\left(\frac{2}{3}\right) \left(\frac{\Delta p}{P} \times 100\right) = -\frac{2}{3} \times \frac{2}{3}\% = -\frac{4}{9}\%$$

Thus, volume decreases by $\frac{4}{9}\%$.

23. pV = RT where R is gas constant

Also, given $pV^{3/2} = \text{constant}$

$$\therefore$$
 Putting the value of $p = \frac{RT}{V}$, we have

$$\frac{RT}{V}V^{3/2}$$
 = constant

$$TV^{1/2} = \text{Constant}$$

$$T_1 V_1^{1/2} = T_2 V_2^{1/2}$$

$$\therefore TV^{1/2} = T_2 \left(\frac{V}{2}\right)^{1/2}$$

$$\Rightarrow T_2 = (2)^{1/2}T$$

24.
$$\Delta Q = \Delta U + \Delta W = \Delta U + \Delta W$$

$$\Rightarrow$$
 100 = $\Delta U + 50 \times (4-10)$

$$\Rightarrow \Delta U = 400J$$

Second Law of Thermodynamics and Entropy

29. Efficiency
$$\eta = 1 - \frac{T_2}{T_1}$$

$$\therefore \eta = 1 - \frac{(27 + 273)}{(273 + 627)} = 1 - \frac{300}{900} = \frac{600}{900} = \frac{2}{3}$$

$$30. \quad \eta = 1 - \frac{T_2}{T_1}$$

$$\therefore \frac{T_2}{T_1} = 1 - \eta = 1 - \frac{1}{6} = \frac{5}{6}$$
 (i)

In other case

$$\frac{T_2 - 62}{T_1} = 1 - \eta = 1 - \frac{2}{6} = \frac{2}{3}$$
(ii)

Using eq (i)

$$T_2 - 62 = \frac{2}{3}T_1 = \frac{2}{3} \times \frac{6}{5}T_2 \text{ or } \frac{1}{5}T_2 = 62$$

$$T_2 = 310K = 310 - 273^{\circ}C$$

$$=37^{\circ}C$$

Hence,
$$T_1 = \frac{6}{5}T_2 = \frac{6}{5} \times 310$$

$$= 372 \text{ K}$$

$$= 372 - 273$$

$$=99^{0}C$$

Hence, temperature of source is $99^{\circ}C$

31.
$$\eta = 1 - \frac{T_2}{T_1}$$

Or
$$\frac{W}{Q_1} = 1 - \frac{T_2}{T_1}$$

Here Q_1 = heat absorbed from the source of heat = 6 kcal

$$T_1 = 227 + 273 = 500 \text{ K}$$

And
$$T_2 = 127 + 273 = 400 \text{ K}$$

Hence,
$$\frac{W}{6} = 1 - \frac{400}{500}$$

Or
$$\frac{W}{6} = \frac{100}{500}$$
 or W = 1.2 kcal

34. Coefficient of performance
$$\beta = \frac{Q_2}{W} = \frac{T_L}{T_H - T_L}$$

$$Q_2 = \frac{273 \times 1}{303 - 273} = \frac{273}{30} = 9J$$

Heat delivered to the surrounding

$$Q_1 = Q_2 + W = 9 + 1 = 10J$$

$$35. \quad \eta = 1 - \frac{T_L}{T_H}$$

Where, T_L is temperature of sink and T_H is temperature of hot reservoir

According to question

$$\frac{1}{5} = 1 - \frac{T_L}{T_U}$$
 (i)

And
$$\frac{1}{3} = 1 - \frac{T_L - 50}{T_H}$$
 (ii)

From eq (i)

$$\frac{T_L}{T_H} = \frac{4}{5} \Longrightarrow T_H = \frac{5}{4} T_L$$

Substituting value of T_H in eq (ii) we get

$$\frac{1}{3} = 1 - \frac{T_L - 50}{\frac{5}{4}T_L}$$

Or
$$\frac{4(T_L - 50)}{5T_L} = \frac{2}{3}$$

Or
$$T_L - 50 = \frac{2}{3} \times \frac{5}{4} T_L$$

Or
$$T_L - \frac{5}{6}T_L = 50$$

$$T_L = 50 \times 6 = 300K$$

37.
$$n = \left(1 - \frac{T_2}{T_1}\right) \times 100 = \left(1 - \frac{273 + 20}{273 + 40}\right) \times 100$$

$$= \left(1 - \frac{293}{313}\right) \times 100 = 0.064 \times 100 = 6.4\%$$

39.
$$\eta = \frac{W}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2}{T_1}$$

Given,
$$T_2 = 27^{\circ}C = 273 + 27 = 300K$$
,

$$T_1 = 677^0 C = 677 + 273 = 950 K$$

$$\therefore \eta = 1 - \frac{T_2}{T_1} = 1 - \frac{300}{950} = \frac{13}{19}$$

$$\therefore W = \eta Q_1 = 100 \times 10^3 \times \frac{13}{19} cal$$

$$\therefore W = 100 \times 10^3 \times \frac{13}{19} \times 4.2$$

$$W = 2.87 \times 10^5$$

$$W = 0.28 \times 10^6 J$$

Calorimetry

41. Let the final temperature of mixture be t^0C . Heat lost by water in calories,

$$H_1 = 19 \times 1 \times (30 - t)$$

$$= 570 - 19 t$$

Heat taken by ice, $H_2 = ms_i \Delta t + mL + mswt$

$$= 5 \times (0.5) \times 20 + 5 \times 80 + 5 \times 1 \times t$$

But,
$$H_1 = H_2$$

$$5 \times (0.5) \times 20 + 5 \times 80 + 5t = 570 - 19t$$

$$\Rightarrow 24t = 570 - 450 = 120 \Rightarrow t = 5^{\circ}C$$

43. Specific heat of water = $4200 J kg K^{-1}$

Specific latent heat of fusion = $3.36 \times 10^5 J kg^{-1}$

Specific latent heat of vaporization = $22.68 \times 10^5 J kg^{-1}$

$$= X \times 10^{-3} \times 22.68 \times 10^{5}$$

$$= Y \times 10^{-3} \times 3.36 \times 10^{5} + Y \times 10^{-3} \times 4200 \times 100$$

$$\therefore \frac{X}{Y} = \frac{7.56}{22.68} = \frac{1}{3}$$