www.sakshieducation.com

Connected Bodies

2011

1. Two bodies of masses 4kg and 6kg are tied to the ends of a mass less string. The string passes over a frictionless pulley. The acceleration of the system is

 $\frac{c}{5}$

JUC2

- a) $\frac{g}{2}$ b) $\frac{g}{3}$
- 1. From the figure
 - For mass 4kg

 $T-4g=4f\ldots(i)$

For mass $6kg \qquad 6g - T = 6f....(ii)$

Adding both equations, we get

$$2g = 10 f$$

 $f = \frac{g}{5}$

2005

2. Three blocks of masses m_1, m_2 and m_3 are connected by mass less strings as shown on a frictionless table. They are pulled with a force of 40N. If $m_1 = 10kg$, $m_2 = 6kg$ and $m_3 = 4kg$, then tension T_2 will be

www.sakshieducation.com

www.sakshieducation.com

2. Since, the table is frictionless ie, it is smooth therefore, force on the blocks is given by

 $F = (m_1 + m_2 + m_3)a$

$$\Rightarrow a = \frac{F}{m_1 + m_2 + m_3} = \frac{40}{10 + 6 + 4} = \frac{40}{20} = 2ms^{-2}$$
Now the tension between 10kg and 6kg masses is given by
$$T_2 = (m_1 + m_2)a = (10 + 6) 2 = 16 \text{ x } 2 = 32\text{N}$$

$$T_2 = (m_1 + m_2)a = (10 + 6) 2 = 16 \text{ x} 2 = 32 \text{N}$$