Vectors

1. If vectors $\hat{i}-3 \hat{j}+5 \hat{k}$ and $\hat{i}-3 \hat{j}-a \hat{k}$ are equal vectors, then the value of a is
a) 5
b) 2
c) -3
d) 4

2010
2. If $a+b=c$ and $a+b=c$, then the angle included between a and b is
a) 90°
b) 180°
c) 120°
d) Zero
3. Three equal masses of $1 \mathbf{k g}$ each are placed at the vertices of an equilateral triangle PQR and a mass of 2 kg is placed at the centroid O of the triangle which is at a distance of $\sqrt{2} m$ from each of the vertices of the triangle. The force, in Newton, acting on the mass of $\mathbf{2 k g}$ is
a) 2
b) 1
c) 1
d) Zero
4. Find the torque of a force $F=3 \hat{i}+2 \hat{j}+\hat{k}$ acting at the point $r=8 \hat{i}+2 \hat{j}+3 \hat{k}$
a) $14 \hat{i}-38 \hat{j}+16 \hat{k}$
b) $4 \hat{i}+4 \hat{j}+6 \hat{k}$
c) $-14 \hat{i}+38 \hat{j}-16 \hat{k}$
d) $-4 \hat{i}-17 \hat{j}+22 \hat{k}$
5. A variable force, given by the two dimensional vector $F=\left(3 x^{2} \hat{i}+4 \hat{j}\right)$, acts on a particle. The force is in Newton and x is in metre. What is the change in the kinetic energy of the particle as it moves from the point with coordinates $(2,3)$ to $(3,0)$? (The coordinates are in metres)
a) -7 J
b) Zero
c) +7 J
d) 19 J
6. The centre of mass of a system of three particles of masses $1 \mathrm{~g}, 2 \mathrm{~g}$ and 3 g is taken as the origin of a coordinates system. The position vector of a fourth particle of mass $\mathbf{4 g}$ such that the centre of mass of the four particle system lies at the point $(1,2$, and 3$)$ is $\alpha(\hat{i}+2 \hat{j}+3 \hat{k})$, where it is constant. The value of α is
a) $10 / 3$
b) $5 / 2$
c) $1 / 2$
d) $2 / 5$
7. If a_{1} and a_{2} are two non-collinear unit vectors and if $\left|a_{1}+a_{2}\right|=\sqrt{3}$, then the value of $\left(a_{1}-a\right) \cdot\left(2 a_{1}+a_{2}\right)$ is
a) 2
b) $\frac{3}{2}$
c) $\frac{1}{2}$
d) 1
8. There are \mathbf{N} coplanar vectors each of magnitude V. Each vector is inclined to the preceding vector at angle $\frac{2 \pi}{N}$. What is the magnitude of their resultant?
a) $\frac{V}{N}$
b) V
c) Zero
d) $\frac{N}{V}$

2008
9. The value of P so that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}$ and $3 \hat{i}+P \hat{j}+5 \hat{k}$ are coplanar should be
a) 16
b) -4
c) 4
d) -8
10. Two forces of 12 N and 8 N act upon a body. The resultant force on the body has a maximum value of
a) 4 N
b) Zero
c) 20 N
d) 8 N
11. The condition under which vectors $(a+b)$ and $(a-b)$ should be at right angles to each other is
a) $a \neq b$
b) $a \cdot b=0$
c) $|a|=|b|$
d) $\mathrm{a} . \mathrm{b}=1$
12. A car travels 6 km towards North at an angle of 45° to the East and then travels distance of $\mathbf{4 k g}$ towards North at an angle 135° to East. How far is the point from the starting point? What angle does the straight line joining its initial and final positions makes with the East?
a) $\sqrt{50} \mathrm{~km}$ and $\tan ^{-1}$
b) 10 km and $\tan ^{-1}(\sqrt{5})$
c) $\sqrt{52} \mathrm{~km}$ and $\tan ^{-1}(5)$
d) $\sqrt{52} \mathrm{~km}$ and $\tan ^{-1}(\sqrt{5})$
13. A train of $\mathbf{1 5 0} \mathbf{m}$ length is going towards North direction at a speed of $10 \mathrm{~ms}^{-1}$. A parrot flies at a speed of $5 \mathrm{~ms}^{-1}$ towards South direction parallel to the railway track. The time taken by the parrot to cross the train is equal to
a) 12 s
b) 8 s
c) 15 s
d) 10 s
14. Rain is falling vertically downwards with a velocity of $4 k m h^{-1}$. A man walks in the rain with a velocity of $3 \mathrm{kmh}^{-1}$. The raindrops will fall on the man with a velocity is
a) $1 \mathrm{kmh}^{-1}$
b) $3 \mathrm{kmh}^{-1}$
c) $4 \mathrm{kmh}^{-1}$
d) $5 \mathrm{kmh}^{-1}$
15. A proton in a cyclotron changes its velocity from $30 \mathrm{kms}^{-1}$ North to $40 \mathrm{kms}^{-1}$ East in 20s. What is the magnitude of average acceleration during this time?
a) $2.5 \mathrm{kms}^{-2}$
b) $12.5 \mathrm{kms}^{-2}$
c) $22.5 \mathrm{kms}^{-2}$
d) $32.5 \mathrm{kms}^{-2}$

2006

16. A police jeep is chasing with velocity of $45 \mathrm{kmh}^{-1}$, a thief in another jeep moving with velocity $153 \mathrm{kmh}^{-1}$. Police fires a bullet with muzzle velocity of $180 \mathrm{~ms}^{-1}$. The velocity with which will strike the car of the thief, is
a) $150 \mathrm{~ms}^{-1}$
b) $27 \mathrm{~ms}^{-1}$
c) $450 \mathrm{~ms}^{-1}$
d) $250 \mathrm{~ms}^{-1}$

2005

17. Minimum of unequal vectors which can gives zero resultant are
a) Two
b) Three
c) Four
d) More than four
18. If a vector $2 \hat{i}+3 \hat{j}+8 \hat{k}$ is perpendicular to the vector $4 \hat{j}-4 \hat{i}+\alpha \hat{k}$, then the value of α is
a) -1
b) $\frac{1}{2}$
c) $-\frac{1}{2}$
d) 1
19. The vectors from origin to the points \mathbf{A} and B are $A=3 \hat{i}-6 \hat{j}+2 \hat{k}$ and $B=2 \hat{i}+\hat{j}-2 \hat{k}$ respectively. The area of the triangle OAB is
a) $\frac{5}{2} \sqrt{17}$
b) $\frac{2}{5} \sqrt{17}$
c) $\frac{3}{5} \sqrt{17}$
d) $\frac{5}{3} \sqrt{17}$

Key

1) \mathbf{c}	2) d	3) d	4) d	5) c	6) b	7) \mathbf{c}	8) \mathbf{c}	9) \mathbf{b}	10) \mathbf{c}
11) \mathbf{c}	12) \mathbf{c}	13) d	14) d	15) \mathbf{a}	16) \mathbf{a}	17) b	18) \mathbf{c}	19) \mathbf{a}	

Hints

1. Given vectors
$A=\hat{i}-3 \hat{j}+5 \hat{k}$
$B=\hat{i}-3 \hat{j}-a \hat{k}$
According to problem both vectors are equal then $\mathrm{A}=\mathrm{B}$, so that the value of $\mathrm{a}=-5$
2. We have $\mathrm{a}+\mathrm{b}=\mathrm{c}$ and $\mathrm{c}=\mathrm{a}+\mathrm{b}$
$\Rightarrow c=\sqrt{a^{2}+b^{2}+2 a b \cos \theta}$
$\Rightarrow a+b=\sqrt{a^{2}+b^{2}+2 a b \cos \theta}$
$\Rightarrow a^{2}+b^{2}+2 a b=a^{2}+b^{2}+2 a b \cos \theta$
$\Rightarrow \cos \theta=1 \Rightarrow \theta=0^{\circ}$
3. Given, $\mathrm{OP}=\mathrm{OQ}=\mathrm{OR}=\sqrt{2} m$

The gravitational force on the mass 2 kg due to the 1 kg mass at P is
$F_{O P}=G \frac{2 \times 1}{(\sqrt{2})^{2}}=G$ along OP

Similarly, $F_{O Q}=G_{1} \frac{2 \times 1}{(\sqrt{2})^{2}}=G_{1}$ along OQ and

www.sakshieducation.com

$F_{O R}=G_{1} \frac{2 \times 1}{(\sqrt{2})^{2}}=G_{1}$ along OR
$F_{O Q} \cos 30^{\circ}$ and $F_{O R} \cos 30^{\circ}$ are equal and acting in opposite directions, thus they cancel out.
Hence, the resultant force on the 2 kg mass at O , is
$F=F_{O P}=\left(F_{O Q} \sin 30^{\circ}+F_{O R} \sin 30^{\circ}\right)$
$=G_{1}-\left(\frac{G_{1}}{2}+\frac{G_{1}}{2}\right)$
$=0$
4. Torque of the force, $\tau=r \times F$

So, $\tau=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 8 & 2 & 3 \\ -3 & 2 & 1\end{array}\right|$
$=\hat{i}(2-6)-\hat{j}(8+9)+\hat{k}(16+6)$
$=-4 \hat{i}-17 \hat{j}+22 \hat{k}$
5. Given two dimensional force
$F=3 x^{2} \hat{i}+4 \hat{j}$
$r=x \hat{i}+y \hat{j}$
$d r=d x \hat{i}+d y \hat{j}$
Kinetic energy = work done
$W=\int F \cdot d r$
$=\int_{(2,3)}^{(3,0)}\left(3 x^{2} \hat{i}+4 \hat{j}\right) \cdot(d x \hat{i}+d y \hat{j})$
$=\int_{2}^{3}\left(3 x^{2} d x+4 d y\right)$
$=\left[x^{3}\right]_{2}^{3}+4[y]_{3}^{0}=(27-8)+4(-3)$
$=19-12=7 \mathrm{~J}$

www.sakshieducation.com

6. The coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) of masses $1 \mathrm{~g}, 2 \mathrm{~g}, 3 \mathrm{~g}$ and 4 g are $\left(x_{1}=0, y_{1}=0, z_{1}=0\right)$,

$$
\begin{aligned}
& \left(x_{2}=0, y_{2}=0, z_{2}=0\right) \\
& \Rightarrow x_{C M}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+m_{4} x_{4}}{m_{1}+m_{2}+m_{3}+m_{4}} \\
& =\frac{4 \alpha}{1+2+3+4} \\
& =\frac{4 \alpha}{10}
\end{aligned}
$$

Hence, $\frac{4 \alpha}{10}=1$
$\Rightarrow \alpha=\frac{5}{2}$
$\Rightarrow y_{C M}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}+m_{4} y_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}=\frac{8 \alpha}{10}=2$
$\Rightarrow \alpha=\frac{5}{2}$
$\Rightarrow z_{C M}=\frac{m_{1} z_{1}+m_{2} z_{2}+m_{3} z_{3}+m_{4} z_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}$
$=\frac{12 \alpha}{10}=3 \Rightarrow \alpha=5 / 2$
7. Since, a_{1} and a_{2} are non =collinear
$\therefore a_{1}=a_{2}=1$
And $\left|a_{1}+a_{2}\right|=\sqrt{3}$
$\Rightarrow a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} \cos \theta=(\sqrt{3})^{2}$
$\Rightarrow 1+1+2 \cos \theta=3 \Rightarrow \cos \theta=\frac{1}{2}$
Now $\left(a_{1}+a_{2}\right) \cdot\left(2 a_{1}+a_{2}\right)$
$=2 a_{1}^{2}-a_{2}^{2}-a_{1} a_{2} \cos \theta=2-1-\frac{1}{2}=\frac{1}{2}$

www.sakshieducation.com

8. Since each of N-coplanar vectors is inclined at $\frac{2 \pi}{N}$ to the preceding hence, they will form a closed polygon. Therefore, their resultant must be zero
9. For coplanarity
$\left|\begin{array}{ccc}2 & -1 & 1 \\ 1 & 2 & -3 \\ 3 & P & 5\end{array}\right|=0$
Or $2(10+3 \mathrm{P})+1(5+9)+1(\mathrm{P}-6)=$
Or $20+6 \mathrm{P}+5+9+\mathrm{P}-6=0$
Or $7 \mathrm{P}+34-6=0$
Or $7 \mathrm{P}+28=0$
Or 7P = -28
$\Rightarrow P=-\frac{28}{7}=-4$
10. When the two forces of 12 N 8 N act upon a body, the resultant force on the body has maximum value when resultant force
$=12 \mathrm{~N}+8 \mathrm{~N}=20 \mathrm{~N}$
11. The dot product of two vectors should be equal to zero is $(a+b) .(a-b)=0$
$\Rightarrow a^{2}-b^{2}=0$
$\Rightarrow|a|=|b|$
12. Net movement along X-direction

$$
\begin{aligned}
& S_{x}=(6-4) \cos 45^{0} \hat{i} \\
& =2 \times \frac{1}{\sqrt{2}}=\sqrt{2} \mathrm{~km}
\end{aligned}
$$

Net movement along Y-direction

$$
\begin{aligned}
& S_{y}=(6+4) \sin 45^{0} \hat{j} \\
& =10 \times \frac{1}{\sqrt{2}}=5 \sqrt{2} \mathrm{~km}
\end{aligned}
$$

Net movement from starting point
$|S|=\sqrt{S_{x}^{2}+S_{y}^{2}}=\sqrt{(\sqrt{2})^{2}+(5 \sqrt{2})^{2}}$
$=\sqrt{52} \mathrm{~km}$
Angle which resultant makes with the east direction

$$
\tan \theta=\frac{y-\text { component }}{x-\text { component }}
$$

$$
=\frac{5 \sqrt{2}}{\sqrt{2}}
$$

$$
\theta=\tan ^{-1}(5)
$$

13. Relative velocity of the parrot w.r.t the train

$$
=[10-(-5)] m s^{-1}=15 m s^{-1}
$$

Time taken by the parrot to cross the train
$\frac{150}{15}=10 \mathrm{~s}$
14. Relative velocity of man w.r.t rain

$$
\begin{aligned}
& v_{r m}=v_{r}-v_{m} \\
& =4 \hat{j}-3 \hat{i} \\
& =-3 \hat{i}+4 \hat{j}
\end{aligned}
$$

$\mathrm{Or}=5 k m h^{-1}$
$\left|v_{r m}\right|=\sqrt{(-3)^{2}+(4)^{2}}$
$=\sqrt{9+16}$
$=\sqrt{25}=5$
16. Change in velocity $=\sqrt{(40)^{2}+(30)^{2}}$
$=50 \mathrm{kms}^{-1}$

Average acceleration $=\frac{50}{20}$
$=2.5 \mathrm{kms}^{-2}$
17. The relative velocity of thief's jeep with respect to police jeep $=153-45$

$$
=108 \mathrm{kmh}^{-1}
$$

$=108 \times \frac{5}{18}=30 \mathrm{~ms}^{-1}$
Therefore, striking speed=relative speed of bullet with respect to thief's car
$=180-30=150 \mathrm{~ms}$
18. By triangle law of vectors minimum three vectors are required to give zero resultant
19. Let $a=2 \hat{i}+3 \hat{j}+8 \hat{k}$

$$
\begin{aligned}
& b=4 \hat{i}-4 \hat{j}+\alpha \hat{k} \\
& =-4 \hat{i}+4 \hat{j}+\alpha \hat{k}
\end{aligned}
$$

Given $a \perp b$

$$
\begin{aligned}
& \Rightarrow a \cdot b=0 \\
& \Rightarrow(2 \hat{i}+3 \hat{j}+8 \hat{k}) \cdot(-4 \hat{i}+4 \hat{j}+\alpha \hat{k})=0 \\
& \Rightarrow-8+12+8 \alpha=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 8 \alpha=-4 \\
& \therefore \alpha=-\frac{4}{8}=-\frac{1}{2}
\end{aligned}
$$

