www.sakshieducation.com

Horizontal Motion

A body moves 6 m North, 8 m East and 10m vertically upwards, what is its 1. resultant displacement from initial position [DCE 2000] $(4)_{10 \times 2m}$ $(3)\frac{10}{\sqrt{2}}m$ (1) $10\sqrt{2}m$ (2) 10mA man goes 10m towards North, then 20m towards East then displacement is 2. [KCET 1999; JIPMER 1999; AFMC 2003] (1) 22.5m(2) 25m(4) 30m(3) 25.5mA person moves 30 m North and then 20 m towards East and finally $30\sqrt{2}$ m in 3. South-West direction. The displacement of the person from the origin will be [J & K CET 2004] (2) 10 m long South (1) 10 *m* along North (4) Zero (3) 10 m along West An aeroplane flies 400 m North and 300 m South and then flies 1200 m 4. upwards then net displacement is [AFMC 2004] (2) 1300 m (1) 1200 m(3) 1400 m (4) 1500 m An athlete completes one round of a circular track of radius R in 40 sec. What 5. will be his displacement at the end of 2 min. 20 sec [NCERT1990; Kerala PMT 2004] (1)Zero (2) 2R(3) $2\pi R$ (4) $7\pi R$ A wheel of radius 1 meter rolls forward half a revolution on a horizontal 6. ground. The magnitude of the displacement of the point of the wheel initially in contact with the ground is [BCECE 2005] $(3)\sqrt{\pi^2+4}$ (2) $\sqrt{2\pi}$ $(1) 2\pi$ (4) π A person travels along a straight road for half the distance with velocity v_1 and 7.

the remaining half distance with velocity v_2 . The average velocity is given by

[MP PMT 2001]

(1)
$$v_1 v_2$$
 (2) $\frac{v_2^2}{v_1^2}$ (3) $\frac{v_1 + v_2}{2}$ (4) $\frac{2v_1 v_2}{v_1 + v_2}$

8. The displacement-time graph for two particles A and B are straight lines inclined at angles of 30° and 60° with the time axis. The ratio of velocities of $V_A : V_B$ is [CPMT 1990; MP PET 1999; MP PET 2001; Pb. PET 2003]

(1) 1:2 (2)
$$1:\sqrt{3}$$
 (3) $\sqrt{3}:1$ (4) 1:3

9. A car travels from A to B at a speed of 20 km/hr and returns at a speed of 30 km/hr. The average speed of the car for the whole journey is [MP PET 1985]

- (1) 25 km/hr (2) 24 km/hr (3) 50 km/hr (4) 5 km/hr
- 10. A boy walks to his school at a distance of 6 km with constant speed of 2.5km/hour and walks back with a constant speed of 4 km/hr. His average speedfor round trip expressed in km/hour, is[AIIMS 1995](1) 24/13(2) 40/13(3) 3(4) 1/2

11. A car travels the first half of a distance between two places at a speed of 30 km/hr and the second half of the distance at 50 km/hr. The average speed of the car for the whole journey is [Manipal MEE 1995; AFMC 1998]

- (1) 42.5 km/hr (2) 40.0 km/hr (3) 37.5 km/hr (4) 35.0 km/hr
- 12. One car moving on a straight road covers one third of the distance with 20 *km/hr* and the rest with 60 *km/hr*. The average speed is [MP PMT 1999; CPMT 2002]
 - (1) 40 km/hr (2) 80 km/hr (3) $46\frac{2}{3}$ km/hr (4) 36 km/hr
- 13. A car moves for half of its time at 80 km/h and for rest half of time at 40 km/h.Total distance covered is 60 km. What is the average speed of the car

[RPET 1996]

(1) 60 km/h (2) 80 km/h (3) 120 km/h (4) 180 km/h

- 14. A train has a speed of 60 km/h. for the first one hour and 40 km/h for the next half hour. Its average speed in *km/h* is [JIPMER 1999] (1)50(2)53.33(3) 48(4)70
- 15. Which of the following is a one dimensional motion [BHU 2000; CBSE PMT 2001]
 - (2) Earth revolving a round the sun (1) Landing of an aircraft
 - (3) Motion of wheels of a moving trains (4) Train running on a straight track
- 16. A 150 m long train is moving with a uniform velocity of 45 km/h. The time taken by the train to cross a bridge of length 850 meters is

[CBSE PMT 2001]

(3) 80 sec (4) 92 sec $(2)\,68\,sec$ (1) 56 sec

- 17. A particle is constrained to move on a straight line path. It returns to the starting point after 10 sec. The total distance covered by the particle during this time is 30 m. Which of the following statements about the motion of the particle is false [CBSE PMT 2000; AFMC 2001]
 - (1) Displacement of the particle is zero (2) Average speed of the particle is 3 m/s
 - (3) Displacement of the particle is 30 m (4) Both (1) and (2)
- 18. A particle moves along a semicircle of radius 10m in 5 seconds. The average velocity of the particle is [Kerala (Engg.) 2001]
 - (1) $2\pi ms^{-1}$ (2) $4\pi ms^{-1}$ (3) $2 ms^{-1}$ (4) $4 ms^{-1}$
- 19. A man walks on a straight road from his home to a market 2.5 km away with a speed of 5 km/h. Finding the market closed, he instantly turns and walks back home with a speed of 7.5 km/h. The average speed of the man over the interval of time 0 to 40 min. is equal to [AMU (Med.) 2002]
 - (2) $\frac{25}{4}$ km/h (3) $\frac{30}{4}$ km/h (4) $\frac{45}{8}$ km/h (1) 5 km/h
- 20. The ratio of the numerical values of the average velocity and average speed of a [MP PET 2002] body is always

(1) Unity (2) Unity or less (3) Unity or more (4) Less than unity 21. A person travels along a straight road for the first half time with a velocity v_1 and the next half time with a velocity v_2 . The mean velocity v of the man is [RPET 1999; BHU 2002] (1) $\frac{2}{V} = \frac{1}{v_1} + \frac{1}{v_2}$ (2) $V = \frac{v_1 + v_2}{2}$ (3) $V = \sqrt{v_1 v_2}$ $(4) \quad V = \sqrt{\frac{v_1}{v_2}}$ 22. The numerical ratio of displacement to the distance covered is always [BHU 2004] (2) Equal to one (1) Less than one (3) Equal to or less than one (4) Equal to or greater than one 23. A 100 m long train is moving with a uniform velocity of 45 km/hr. The time taken by the train to cross a bridge of length 1 km is [BHU 2004] (3) 78 s (1) 58 s (2)68 s(4) 88 s 24. A particle moves for 20 seconds with velocity 3 m/s and then velocity 4 m/s for another 20 seconds and finally moves with velocity 5 m/s for next 20 seconds. What is the average velocity of the particle [MHCET 2004] (2) 4 m/s(1) 3 m/s(3) 5 m/s(4) Zero 25. A particle experiences a constant acceleration for 20 sec after starting from rest. If it travels a distance s_1 in the first 10 sec and a distance s_2 in the next 10 sec, then [NCERT 1972; CPMT 1997; MP PMT 2002] (2) $s_1 = s_2/3$ (3) $s_1 = s_2/2$ (4) $s_1 = s_2/4$ 26. The displacement x of a particle along a straight line at time t is given by $x = a_0 + a_1 t + a_2 t^2$. The acceleration of the particle is [NCERT 1974; RPMT 1999; AFMC 1999]

(1) a_0 (2) a_1 (3) $2a_2$ (4) a_2

The coordinates o	f a moving narticl	e at anv time a	are given by $x = at^2$ and $y = bt^2$.				
The speed of the p	article at any mon	[DPMT 1984; CPMT 1997]					
(1) $2t(a+b)$	(2) $2t\sqrt{(a^2-b^2)}$	$(3) t\sqrt{a^2+b^2}$	(4) $2t\sqrt{(a^2+b^2)}$				
An electron starti	ing from rest has	a velocity that	t increases linearly with the				
time that is $v = kt$, where $k = 2m / \sec^2$. The distance travelled in the first 3 seconds							
will be [NCERT 1982]							
(1)9 m	(2)16 m	(3) 27 m	(4) 36 m				
The displacement	of a body is give	en to be propo	ortional to the cube of time				
elapsed. The magnitude of the acceleration of the body is [NCERT 1990]							
(1) Increasing with	time	ng with time					
(3) Constant but no	t zero	(4) Zero					
The displacement of a particle is given by $y = a + bt + ct^2 - dt^4$. The initial							
velocity and acceleration are respectively [CPMT 1999, 2003							
(1) $b, -4d$	(2) - b, 2c	(3) $b, 2c$	(4) $2c, -4d$				
A car moving with	h a speed of 40 <i>km</i>	/h can be stop	ped by applying brakes after				
atleast 2 m. If the	e same car is mov	ving with a sp	eed of 80 km/h, what is the				
minimum stopping distance							
	CBSE PMT 1	1998, 1999; AF	MC 2000; JIPMER 2001, 02]				
(1) 8 m	(2) $2 m$	(3) 4 <i>m</i>	(4) 6 <i>m</i>				
If a train travelling at 72 kmph is to be brought to rest in a distance of 200							
metres, then its re	tardation should b	e [S	SCRA 1998; MP PMT 2004]				
(1) 20 ms ⁻²	(2) $10 ms^{-2}$	(3) 2 ms^{-2}	(4) 1 ms^{-2}				
A particle starts fi	com rest, accelerat	es at 2 <i>m/s</i> ² for	10s and then goes for				
constant speed for 30s and then decelerates at $4 m/s^2$ till it stops. What is the							
distance travelled		[DCE 200]	(4) 050				
(1) / 50 m	(2) 800 m	(3) /00 m	(4) 850 <i>m</i>				
	The coordinates of The speed of the p (1) 2t(a+b) An electron start time that is $v = kt$, will be (1) 9 m The displacement elapsed. The magn (1) Increasing with (3) Constant but no The displacement velocity and accele (1) b, -4d A car moving with atleast 2 m. If the minimum stopping (1) 8 m If a train travelling metres, then its rec $(1) 20 ms^{-2}$ A particle starts for constant speed for distance travelled (1) 750 m	The coordinates of a moving particle The speed of the particle at any more (1) $2t(a+b)$ (2) $2t\sqrt{a^2-b^2}$ An electron starting from rest has time that is $v = kt$, where $k = 2m/\sec^2$. The will be (1) 9 m (2) 16 m The displacement of a body is given elapsed. The magnitude of the acceler (1) Increasing with time (3) Constant but not zero The displacement of a particle is velocity and acceleration are respect (1) $b, -4d$ (2) $-b, 2c$ A car moving with a speed of 40 km atleast 2 m. If the same car is more minimum stopping distance ICBSE PMT 1 (1) 8 m (2) 2 m If a train travelling at 72 kmph is metres, then its retardation should b (1) 20 ms ⁻² (2) 10 ms ⁻² A particle starts from rest, acceleration constant speed for 30s and then decent distance travelled by it (1) 750 m (2) 800 m	The coordinates of a moving particle at any time as The speed of the particle at any moment is (1) $2t(a+b)$ (2) $2t\sqrt{a^2-b^2}$ (3) $t\sqrt{a^2+b^2}$ An electron starting from rest has a velocity that time that is $v = kt$, where $k = 2m/\sec^2$. The distance transition will be (1) 9 m (2) 16 m (3) 27 m The displacement of a body is given to be proper- elapsed. The magnitude of the acceleration of the bacter (1) Increasing with time (2) Decreasing (3) Constant but not zero (4) Zero The displacement of a particle is given by $y = t^2$ velocity and acceleration are respectively (1) $b, -4d$ (2) $-b, 2c$ (3) $b, 2c$ A car moving with a speed of 40 km/h can be storp atleast 2 m. If the same car is moving with a sp minimum stopping distance (1) 8 m (2) 2 m (3) 4 m If a train travelling at 72 kmph is to be brought metres, then its retardation should be [S (1) 20 ms ⁻² (2) 10 ms ⁻² (3) 2 ms ⁻² A particle starts from rest, accelerates at 2 m/s ² for constant speed for 30s and then decelerates at 4 m/s ² distance travelled by it [DCE 2001 (1) 750 m (2) 800 m (3) 700 m				

34.	The engine of a motorcycle can produce a maximum acceleration 5 m/s^2 . Its							
	brakes can produce a maximum retardation 10 m/s^2 . What is the minimum							
	time in which it can	f 1.5 <i>km</i>	[Pb. PMT 2002]					
	(1) 30 <i>sec</i>	(2) 15 sec	(3) 10 sec	(4) 5 <i>sec</i>				
35.	The path of a partic	The path of a particle moving under the influence of a force fixed in magnitud						
	and direction is			[MP PET 2002]				
	(1) Straight line	(2) Circle	(3) Parabola	(4) Ellipse				
36.	A body is moving with uniform acceleration describes 40 <i>m</i> in the first 5 sec and							
	65 <i>m</i> in next 5 sec. I	rill be	[Pb. PET 2003]					
	(1) 4 <i>m/s</i>	(2) 2.5 <i>m/s</i>	(3) 5.5 <i>m/s</i>	(4) 11 <i>m/s</i>				
37.	The displacement	x of a particle	varies with time t, x	$a = ae^{-\alpha t} + be^{\beta t}$, where				
	a, b, α and β are positive constants. The velocity of the particle will							
				[CBSE PMT 2005]				
	(1)Go on decreasing with time (2) Be independent of α and β							
	(3) Drop to zero whe	$\alpha = \beta$	(4) Go on increasing	with time				
38.	A particle moves al	long x-axis as	$x = 4(t-2) + a(t-2)^2$. Which	ch of the following is				
	true?	5		[J&K CET 2005]				
	(1)The initial velocit	y of particle is 4	(2) The acceleration	of particle is 2 <i>a</i>				
	(3) The particle is at	origin at $t = 0$	(4) None of these					
39.	A body starting fi	rom rest moves v	vith constant acceler	ration. The ratio of				
	distance covered by	the body during t	he 5th <i>sec</i> to that cove	ered in 5 sec is				
	1			[Kerala PET 2005]				
	(1)9/25	(2) 3/5	(3) 25/9	(4) 1/25				
40.	What determines th	e nature of the pat	th followed by the par	rticle[AFMC 2005]				
	(1) Speed	(2) Velocity	(3) Acceleration	(4) None of these				
41.	An object accelerate	es from rest to a ve	elocity 27.5 <i>m/s</i> in 10 <i>s</i>	ec then find distance				
	covered by object in next 10 sec [BCECE 2004]							
	(1) 550 <i>m</i>	(2) 137.5 <i>m</i>	(3) 412.5 <i>m</i>	(4) 275 <i>m</i>				

42. If the velocity of a particle is given by $v = (180 - 16x)^{1/2}$ m/s, then its acceleration [J & K CET 2004] will be (2) $8 m/s^2$ (3) $- 8 m/s^2$ (4) $4 m/s^2$ (1) Zero 43. The displacement of a particle is proportional to the cube of time elapsed. How does the acceleration of the particle depends on time obtained [Pb. PET 2001] (3) $a \propto t^3$ (1) $a \propto t^2$ (2) $a \propto 2t$ $(4)_{a \propto t}$ 44. Starting from rest, acceleration of a particle is a = 2(t-1). The velocity of the [RPET 2002] particle at t = 5s is (1) 15 m/sec (2) 25 m/sec(3) 5 m/sec (4) None of these 45. A body A moves with a uniform acceleration a and zero initial velocity. Another body *B*, starts from the same point moves in the same direction with a constant velocity v. The two bodies meet after a time t. The value of t is [MP PET 2003] $(4)\sqrt{\frac{v}{2a}}$ $(1)\frac{2v}{a}$ Kev

1) 1	2) 1	3) 3	4) 1	5) 2	6) 3	7) 4	8) 4	9) 2	10) 2
11) 3	12) 4	13) 1	14) 2	15) 4	16) 3	17) 3	18) 4	19) 2	20) 2
21) 2	22) 3	23) 4	24) 2	25) 2	26) 3	27) 4	28) 4	29) 1	30) 3
31) 1	32) 4	33) 1	34) 1	35) 1	36) 3	37) 4	38) 2	39) 1	40) 4
41) 3	42) 3	43) 4	44) 1	45) 1					