Horizontal Motion

1. A body moves $6 \boldsymbol{m}$ North, 8 m East and $10 m$ vertically upwards, what is its resultant displacement from initial position
[DCE 2000]
(1) $10 \sqrt{2} \mathrm{~m}$
(2) 10 m
(3) $\frac{10}{\sqrt{2}} m$
(4) $10 \times 2 \mathrm{~m}$
2. A man goes $10 m$ towards North, then $20 m$ towards East then displacement is
[KCET 1999; JIPMER 1999; AFMC 2003]
(1) 22.5 m
(2) 25 m
(3) 25.5 m
(4) 30 m
3. A person moves $30 \boldsymbol{m}$ North and then $\mathbf{2 0} \boldsymbol{m}$ towards East and finally $30 \sqrt{2} \boldsymbol{m}$ in South-West direction. The displacement of the person from the origin will be
[J \& K CET 2004]
(1) 10 m along North
(2) 10 m long South
(3) 10 m along West
(4) Zero
4. An aeroplane flies 400 m North and 300 m South and then flies 1200 m upwards then net displacement is
[AFMC 2004]
(1) 1200 m
(2) 1300 m
(3) 1400 m
(4) 1500 m
5. An athlete completes one round of a circular track of radius R in 40 sec . What will be his displacement at the end of 2 min .20 sec
[NCERT1990; Kerala PMT 2004]
(1) Zero
(2) $2 R$
(3) $2 \pi R$
(4) $7 \pi R$
6. A wheel of radius 1 meter rolls forward half a revolution on a horizontal ground. The magnitude of the displacement of the point of the wheel initially in contact with the ground is
[BCECE 2005]
(1) 2π
(2) $\sqrt{2} \pi$
(3) $\sqrt{\pi^{2}+4}$
(4) π
7. A person travels along a straight road for half the distance with velocity v_{1} and the remaining half distance with velocity v_{2} The average velocity is given by
[MP PMT 2001]
(1) $v_{1} v_{2}$
(2) $\frac{v_{2}^{2}}{v_{1}^{2}}$
(3) $\frac{v_{1}+v_{2}}{2}$
(4) $\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}$
8. The displacement-time graph for two particles A and B are straight lines inclined at angles of 30° and 60° with the time axis. The ratio of velocities of $V_{A}: V_{B}$ is [CPMT 1990; MP PET 1999; MP PET 2001; Pb. PET 2003]
(1) $1: 2$
(2) $1: \sqrt{3}$
(3) $\sqrt{3}: 1$
(4) $1: 3$
9. A car travels from \boldsymbol{A} to \boldsymbol{B} at a speed of $20 \mathrm{~km} / \mathrm{hr}$ and returns at a speed of $30 \mathrm{~km} / \mathrm{hr}$. The average speed of the car for the whole journey is [MP PET 1985]
(1) $25 \mathrm{~km} / \mathrm{hr}$
(2) $24 \mathrm{~km} / \mathrm{hr}$
(3) $50 \mathrm{~km} / \mathrm{hr}$
(4) $5 \mathrm{~km} / \mathrm{hr}$
10. A boy walks to his school at a distance of 6 km with constant speed of 2.5 $\mathrm{km} / \mathrm{hour}$ and walks back with a constant speed of $4 \mathrm{~km} / \mathrm{hr}$. His average speed for round trip expressed in $\mathbf{k m} / \mathrm{hour}$, is
[AIIMS 1995]
(1) $24 / 13$
(2) $40 / 13$
(3) 3
(4) $1 / 2$
11. A car travels the first half of a distance between two places at a speed of 30 $\mathrm{km} / \mathrm{hr}$ and the second half of the distance at $50 \mathrm{~km} / \mathrm{hr}$. The average speed of the car for the whole journey is
[Manipal MEE 1995; AFMC 1998]
(1) $42.5 \mathrm{~km} / \mathrm{hr}$
(2) $40.0 \mathrm{~km} / \mathrm{hr}$
(3) $37.5 \mathrm{~km} / \mathrm{hr}$
(4) $35.0 \mathrm{~km} / \mathrm{hr}$
12. One car moving on a straight road covers one third of the distance with 20 $\mathrm{km} / \mathrm{hr}$ and the rest with $60 \mathrm{~km} / \mathrm{hr}$. The average speed is [MP PMT 1999; CPMT 2002]
(1) $40 \mathrm{~km} / \mathrm{hr}$
(2) $80 \mathrm{~km} / \mathrm{hr}$
(3) $46 \frac{2}{3} \mathrm{~km} / \mathrm{hr}$
(4) $36 \mathrm{~km} / \mathrm{hr}$
13. A car moves for half of its time at $80 \mathrm{~km} / \mathrm{h}$ and for rest half of time at $40 \mathrm{~km} / \mathrm{h}$. Total distance covered is 60 km . What is the average speed of the car
[RPET 1996]
(1) $60 \mathrm{~km} / \mathrm{h}$
(2) $80 \mathrm{~km} / \mathrm{h}$
(3) $120 \mathrm{~km} / \mathrm{h}$
(4) $180 \mathrm{~km} / \mathrm{h}$
14. A train has a speed of $60 \mathrm{~km} / \mathrm{h}$. for the first one hour and $40 \mathrm{~km} / \mathrm{h}$ for the next half hour. Its average speed in $\mathbf{k m} / \mathbf{h}$ is
[JIPMER 1999]
(1) 50
(2) 53.33
(3) 48
(4) 70
15. Which of the following is a one dimensional motion [BHU 2000; CBSE PMT 2001]
(1) Landing of an aircraft
(2) Earth revolving a round the sun
(3) Motion of wheels of a moving trains
(4) Train running on a straight track
16. A 150 m long train is moving with a uniform velocity of $45 \mathrm{~km} / \mathrm{h}$. The time taken by the train to cross a bridge of length 850 meters is
[CBSE PMT 2001]
(1) 56 sec
(2) 68 sec
(3) 80 sec
(4) 92 sec
17. A particle is constrained to move on a straight line path. It returns to the starting point after 10 sec . The total distance covered by the particle during this time is 30 m . Which of the following statements about the motion of the particle is false
[CBSE PMT 2000; AFMC 2001]
(1) Displacement of the particle is zero
(2) Average speed of the particle is $3 \mathrm{~m} / \mathrm{s}$
(3) Displacement of the particle is 30 m
(4) Both (1) and (2)
18. A particle moves along a semicircle of radius $10 m$ in 5 seconds. The average velocity of the particle is
[Kerala (Engg.) 2001]
(1) $2 \pi \mathrm{~ms}^{-1}$
(2) $4 \pi \mathrm{~ms}^{-1}$
(3) $2 m s^{-1}$
(4) $4 \mathrm{~ms}^{-1}$
19. A man walks on a straight road from his home to a market 2.5 km away with a speed of $5 \mathrm{~km} / \mathrm{h}$. Finding the market closed, he instantly turns and walks back home with a speed of $7.5 \mathrm{~km} / \mathrm{h}$. The average speed of the man over the interval of time 0 to 40 min . is equal to
[AMU (Med.) 2002]
(1) $5 \mathrm{~km} / \mathrm{h}$
(2) $\frac{25}{4} \mathrm{~km} / \mathrm{h}$
(3) $\frac{30}{4} \mathrm{~km} / \mathrm{h}$
(4) $\frac{45}{8} \mathrm{~km} / \mathrm{h}$
20. The ratio of the numerical values of the average velocity and average speed of a body is always
[MP PET 2002]
(1) Unity
(2) Unity or less
(3) Unity or more
(4) Less than unity
21. A person travels along a straight road for the first half time with a velocity v_{1} and the next half time with a velocity v_{2}. The mean velocity v of the man is
[RPET 1999; BHU 2002]
(1) $\frac{2}{V}=\frac{1}{v_{1}}+\frac{1}{v_{2}}$
(2) $V=\frac{v_{1}+v_{2}}{2}$
(3) $V=\sqrt{v_{1} v_{2}}$
(4) $V=\sqrt{\frac{v_{1}}{v_{2}}}$
22. The numerical ratio of displacement to the distance covered is always
[BHU 2004]
(1) Less than one
(2) Equal to one
(3) Equal to or less than one
(4) Equal to or greater than one
23. A 100 m long train is moving with a uniform velocity of $45 \mathrm{~km} / \mathrm{hr}$. The time taken by the train to cross a bridge of length 1 km is
[BHU 2004]
(1) 58 s
(2) 68 s
(3) 78 s
(4) $88 s$
24. A particle moves for 20 seconds with velocity $3 \mathrm{~m} / \mathrm{s}$ and then velocity $4 \mathrm{~m} / \mathrm{s}$ for another 20 seconds and finally moves with velocity $5 \mathrm{~m} / \mathrm{s}$ for next 20 seconds. What is the average velocity of the particle
[MHCET 2004]
(1) $3 \mathrm{~m} / \mathrm{s}$
(2) $4 \mathrm{~m} / \mathrm{s}$
(3) $5 \mathrm{~m} / \mathrm{s}$
(4) Zero
25. A particle experiences a constant acceleration for 20 sec after starting from rest. If it travels a distance s_{1} in the first $\mathbf{1 0}$ sec and a distance s_{2} in the next $\mathbf{1 0}$ sec, then
[NCERT 1972; CPMT 1997; MP PMT 2002]
(1) $S_{1}=S_{2}$
(2) $S_{1}=S_{2} / 3$
(3) $S_{1}=S_{2} / 2$
(4) $S_{1}=S_{2} / 4$
26. The displacement x of a particle along a straight line at time t is given by $x=a_{0}+a_{1} t+a_{2} t^{2}$. The acceleration of the particle is
[NCERT 1974; RPMT 1999; AFMC 1999]
(1) a_{0}
(2) a_{1}
(3) $2 a_{2}$
(4) a_{2}
27. The coordinates of a moving particle at any time are given by $x=a t^{2}$ and $y=b t^{2}$. The speed of the particle at any moment is
[DPMT 1984; CPMT 1997]
(1) $2 t(a+b)$
(2) $2 t \sqrt{\left(a^{2}-b^{2}\right)}$
(3) $t \sqrt{a^{2}+b^{2}}$
(4) $2 t \sqrt{\left(a^{2}+b^{2}\right)}$
28. An electron starting from rest has a velocity that increases linearly with the time that is $v=k t$, where $k=2 m / \mathrm{sec}^{2}$. The distance travelled in the first $\mathbf{3}$ seconds will be
[NCERT 1982]
(1) 9 m
(2) 16 m
(3) 27 m
(4) 36 m
29. The displacement of a body is given to be proportional to the cube of time elapsed. The magnitude of the acceleration of the body is
[NCERT 1990]
(1) Increasing with time
(2) Decreasing with time
(3) Constant but not zero
(4) Zero
30. The displacement of a particle is given by $y=a+b t+c t^{2}-d t^{4}$. The initial velocity and acceleration are respectively
[CPMT 1999, 2003]
(1) $b,-4 d$
(2) $-b, 2 c$
(3) $b, 2 c$
(4) $2 c,-4 d$
31. A car moving with a speed of $40 \mathrm{~km} / \mathrm{h}$ can be stopped by applying brakes after atleast 2 m . If the same car is moving with a speed of $80 \mathrm{~km} / \mathrm{h}$, what is the minimum stopping distance
[CBSE PMT 1998, 1999; AFMC 2000; JIPMER 2001, 02]
(1) 8 m
(2) 2 m
(3) 4 m
(4) 6 m
32. If a train travelling at $72 \mathbf{k m p h}$ is to be brought to rest in a distance of 200 metres, then its retardation should be
[SCRA 1998; MP PMT 2004]
(1) $20 \mathrm{~ms}^{-2}$
(2) $10 \mathrm{~ms}^{-2}$
(3) $2 \mathrm{~ms}^{-2}$
(4) $1 \mathrm{~ms}^{-2}$
33. A particle starts from rest, accelerates at $2 \mathrm{~m} / \mathrm{s}^{2}$ for 10 s and then goes for constant speed for 30 s and then decelerates at $4 \mathrm{~m} / \mathrm{s}^{2}$ till it stops. What is the distance travelled by it
[DCE 2001; AIIMS 2002; DCE 2003]
(1) 750 m
(2) 800 m
(3) 700 m
(4) 850 m
34. The engine of a motorcycle can produce a maximum acceleration $5 \mathrm{~m} / \mathrm{s}^{2}$. Its brakes can produce a maximum retardation $10 \mathrm{~m} / \mathrm{s}^{2}$. What is the minimum time in which it can cover a distance of 1.5 km
[Pb. PMT 2002]
(1) 30 sec
(2) 15 sec
(3) 10 sec
(4) 5 sec
35. The path of a particle moving under the influence of a force fixed in magnitude and direction is
[MP PET 2002]
(1) Straight line
(2) Circle
(3) Parabola
(4) Ellipse
36. A body is moving with uniform acceleration describes 40 m in the first 5 sec and $65 m$ in next 5 sec . Its initial velocity will be
[Pb. PET 2003]
(1) $4 \mathrm{~m} / \mathrm{s}$
(2) $2.5 \mathrm{~m} / \mathrm{s}$
(3) $5.5 \mathrm{~m} / \mathrm{s}$
(4) $11 \mathrm{~m} / \mathrm{s}$
37. The displacement x of a particle varies with time $t, x=a e^{-\alpha t}+b e^{\beta t}$, where a, b, α and β are positive constants. The velocity of the particle will
[CBSE PMT 2005]
(1)Go on decreasing with time
(2) Be independent of α and β
(3) Drop to zero when $\alpha=\beta$
(4) Go on increasing with time
38. A particle moves along \boldsymbol{x}-axis as $\quad x=4(t-2)+a(t-2)^{2}$. Which of the following is true?
[J\&K CET 2005]
(1)The initial velocity of particle is 4
(2) The acceleration of particle is $2 a$
(3) The particle is at origin at $t=0$
(4) None of these
39. A body starting from rest moves with constant acceleration. The ratio of distance covered by the body during the 5th sec to that covered in 5 sec is
[Kerala PET 2005]
(1) $9 / 25$
(2) $3 / 5$
(3) $25 / 9$
(4) $1 / 25$
40. What determines the nature of the path followed by the particle[AFMC 2005]
(1) Speed
(2) Velocity
(3) Acceleration
(4) None of these
41. An object accelerates from rest to a velocity $27.5 \mathrm{~m} / \mathrm{s}$ in 10 sec then find distance covered by object in next 10 sec
[BCECE 2004]
(1) 550 m
(2) 137.5 m
(3) 412.5 m
(4) 275 m
42. If the velocity of a particle is given by $v=(180-16 x)^{1 / 2} \boldsymbol{m} / \boldsymbol{s}$, then its acceleration will be
[J \& K CET 2004]
(1) Zero
(2) $8 \mathrm{~m} / \mathrm{s}^{2}$
(3) $-8 \mathrm{~m} / \mathrm{s}^{2}$
(4) $4 \mathrm{~m} / \mathrm{s}^{2}$
43. The displacement of a particle is proportional to the cube of time elapsed. How does the acceleration of the particle depends on time obtained [Pb. PET 2001]
(1) $a \propto t^{2}$
(2) $a \propto 2 t$
(3) $a \propto t^{3}$
(4) $a \propto t$
44. Starting from rest, acceleration of a particle is $a=2(t-1)$. The velocity of the particle at $t=5 s$ is
[RPET 2002]
(1) $15 \mathrm{~m} / \mathrm{sec}$
(2) $25 \mathrm{~m} / \mathrm{sec}$
(3) $5 \mathrm{~m} / \mathrm{sec}$
(4) None of these
45. A body A moves with a uniform acceleration and zero initial velocity. Another body B, starts from the same point moves in the same direction with a constant velocity v. The two bodies meet after a time . The value of t is
[MP PET 2003]
(1) $\frac{2 v}{a}$
(2) $\frac{v}{a}$
(3) $\frac{v}{2 a}$
(4) $\sqrt{\frac{v}{2 a}}$

Key

