www.sakshieducation.com
 Expansion of Liquids

1. Linear and areal expansions have no significance for a liquid, since shape of liquid depends on shape of vessel.
2. Liquids do not possess any definite shape and require a container to hold them. Hence only cubical expansion is considered.
3. For liquids there are two types of cubical expansion
i) Coefficient of apparent expansion $\left(\gamma_{\mathrm{a}}\right)$
ii) Coefficient of real or absolute expansion (γ_{r})
4. Coefficient of apparent expansion of a liquid is the ratio of the apparent increase in volume per $1^{\circ} \mathrm{C}$ rise of temperature to its initial volume.
$\gamma_{\mathrm{a}}=\frac{\text { apparent increase in volume }}{\text { original volume } \times \text { rise in temperature }}$
Unit of $\gamma_{\mathrm{a}}:{ }^{\circ} \mathrm{C}^{1}$.
5. Coefficient of real expansion is the ratio between real increase in volume per $1^{\circ} \mathrm{C}$ rise of temperature and the original volume of the liquid.

$$
\gamma_{r}=\frac{\text { real increase in volume }}{\text { original volume } \times \text { rise in temperature }}=\frac{V_{2}-V_{1}}{V_{1}\left(t_{2}-t_{1}\right)}
$$

Unit of $\gamma_{\mathrm{r}}:{ }^{\circ} \mathrm{C}^{1}$.
6. $\gamma_{r}=\gamma_{a}+\gamma_{\text {vessel }}=\gamma_{a}+3 \alpha$.
7. If $\gamma_{v}=+\mathrm{ve}$ and $\gamma_{\mathrm{r}}<\gamma_{\mathrm{v}}, \gamma_{\mathrm{a}}=\mathrm{ve}$, the level decreases continuously when heated.
8. If $\gamma_{\mathrm{v}}=+\mathrm{ve}$ and $\gamma_{\mathrm{r}}=\gamma_{\mathrm{v}} ; \gamma_{\mathrm{a}}=0$, the level will not change when heated.
9. If $\gamma_{v}=+v e$ and $\gamma_{r}>\gamma_{v} ; \gamma_{a}=+v e$, the level first falls and then rise when heated.
10. If $\gamma_{v}=0 ; \gamma_{r}=\gamma_{a}$, the level will increase continuously when heated.
11. If $\gamma_{\mathrm{v}}=\mathrm{ve}, \gamma_{\mathrm{a}}>\gamma_{\mathrm{r}}$, the level will increase continuously when heated.
12. The real expansion of a liquid does not depend upon the temperature of the container.
13. The apparent expansion of liquid depends on a) initial volume or liquid, b) rise in temperature c) nature of liquid and d) nature of container.
14. The fraction of the volume of a glass flask that must be filled with mercury so that the volume of the empty space left may be the same at all temperatures is $1 / 7$.
15. If the same liquid is heated in two different vessels x and y then $\left(r_{a}\right)_{x}+3 \alpha_{t}=\left(r_{a}\right)_{y}+3 \alpha_{y}$
16. In determining γ_{r} by Dulong and Pettit's method, if h_{0} and h_{t} are heights of liquid is the two limbs of a U - tube maintained at $0^{\circ} \mathrm{C}$ and $\mathrm{t}^{\circ} \mathrm{C} \quad \gamma_{r}=\frac{h_{t}-h_{0}}{h_{0} t} /{ }^{\circ} \mathrm{C}$
17. In determining γ_{a} by specific gravity bottle method.

$$
\begin{gathered}
\text { Weight of empty bottle }=\mathrm{w}_{1} \mathrm{~g} \\
\text { Weight of (bottle + liquid) }=\mathrm{w}_{2} \mathrm{~g} \\
\text { Weight of (bottle + remaining liquid) }=\mathrm{w}_{3} \mathrm{~g} \\
\gamma_{a p p}=\frac{\left(w_{3}-w_{2}\right)}{\left(w_{3}-w_{1}\right)\left(t_{2}-t_{1}\right)} /{ }^{\circ} \mathrm{C} \\
\gamma_{a p p}=\frac{\text { Massof theliquid exp elled }}{\text { Massof the remaining liquid } \times \text { Temp.diff. } .}
\end{gathered}
$$

18. If m_{1} is mass of liquid and m_{2} is mass of remaining liquid, then $\gamma_{a}=\frac{m_{1}-m_{2}}{m_{2}\left(t_{2}-t_{1}\right)}$
19. A specific gravity bottle contains mg of liquid of apparent expansion γ at $0^{\circ} \mathrm{C}$. if it is heated through $\mathrm{t}^{\circ} \mathrm{C}$, mass of expelled liquid is $x=\frac{\gamma m t}{1+\gamma t}$
20. When a solid substance is immersed in a liquid at $0^{\circ} \mathrm{C}$, the loss of weight is w_{0}. Now liquid is heated to $t^{\circ} \mathrm{C}$, loss of weight in the substance is w_{t}. Then $w_{t}=w_{0}\left[1+\left(\gamma_{s}-\gamma_{R}\right) t\right]$
21. A solid of negligible volume expansion floats in a liquid. At $t_{1}{ }^{\circ} \mathrm{C} \& \mathrm{t}_{2}{ }^{\circ} \mathrm{C}$. the fractions $\mathrm{f}_{1}, \mathrm{f}_{2}$ of volumes of the solid remains submerged in the liquid. The coefficient of volume expansion of liquid is $\gamma_{R}=\frac{a_{2}-a_{1}}{a_{1} t_{2}-a_{2} t_{1}}$
22. To keep the volume of empty space in a vessel (volume v_{g}) constant at all temperatures by pouring certain amount of a liquid of volume v_{l}, the condition is $\mathrm{v}_{1} \gamma_{1}=\mathrm{v}_{\mathrm{g}} \gamma_{\mathrm{g}}$ where $\gamma_{1}=$ coefficient of cubical expansion of liquid and $\gamma_{\mathrm{g}}=$ coefficient of cubical expansion of vessel.
23. The density of a liquid usually decreases when heated. If d_{1} and d_{2} are the densities of a liquid at $0^{\circ} \mathrm{C}$ and $\mathrm{t}^{\circ} \mathrm{C}$ respectively, then

$$
d_{t}=\frac{d_{0}}{1+\gamma_{r} t} ; \quad d_{t}=d_{o}\left(\tilde{1} \gamma_{r} \mathrm{t}\right) ;
$$

$\gamma_{r}=\frac{d_{1}-d_{2}}{d_{1} t_{2}-d_{2} t_{1}} /{ }^{\circ} \mathrm{C}$

24. Anomalous Expansion of Water

a) When water at $0^{\circ} \mathrm{C}$ is heated, its volume decreases up to $4^{\circ} \mathrm{C}$ and from $4^{\circ} \mathrm{C}$ its volume increases with the increase of temperature. This peculiar behavior of water is called anomalous expansion of water.
b) Water has maximum density and minimum volume at $4^{\circ} \mathrm{C}$.
c) Hope's apparatus is used to demonstrate that water has maximum density at $4^{\circ} \mathrm{C}$.

d) Dilatometer is used to prove anomalous expansion of water.
e) Aquatic animals are surviving in cold countries due to the anomalous expansion of water.
f) During winter, in cold countries, even if the temperature falls far below $0^{\circ} \mathrm{C}$, the water in the frozen lakes or seas at the bottom remains at $4^{\circ} \mathrm{C}$.
g) When water freezes, it expands and consequently water pipes burst in winter.
h) When water at $4^{\circ} \mathrm{C}$ is filled to the brim of a beaker, then it over flows when it is either cooled or heated.
i) Water has positive coefficient of expansion above $4^{\circ} \mathrm{C}$ and negative coefficient below $4^{\circ} \mathrm{C}$.
j) At $4^{\circ} \mathrm{C}$ the coefficient of expansion of water is zero.

